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Abstract
In this thesis, we have identified two
classes of STRIPS problems that can be
solved as variants of the traveling sales-
man problem (TSP). For problems from
the first class, there exists an encoding
into a TSP instance, and problems from
the second class can be encoded as an
instance of a generalized traveling sales-
man problem with precedence conditions
(PC-GTSP). For both of the classes, we
have proved that every solution to their
encoding can be transformed into an op-
timal plan in the original problem and
vice versa. Finally, we have implemented
the encoding and experimentally evalu-
ated it. The performance of these im-
plementations was compared to several
state-of-the-art planning methods of the
Fast-Downward planner.

Keywords: Planning, Traveling
salesman problem, Precedence
constrained generalized traveling
salesman problem

Supervisor: Ing. Daniel Fišer

Abstrakt
V této práci jsme identifikovali dvě třídy
problémů STRIPS, které se dají vyřešit
jako varianty problému obchodního ces-
tujícího (TSP). Problémy z první třídy
lze převést na instance TSP a problémy
z druhé třídy na instance zobecněného
problému obchodního cestujícího s před-
nostmi (PC-GTSP). Pro obě tyto třídy
jsme dokázali, že řešení těchto instancí
jde transformovat na optimální plán v pů-
vodním problému. Stejně tak lze transfor-
movat optimální plán problému na řešení
instance TSP, respektivě PC-GTSP. Nako-
nec jsme převody obou tříd naimplemen-
tovali a experimentálně porovnali jejich
výkonnost s řadou state-of-the-art pláno-
vacích metod programu Fast-Downward.

Klíčová slova: Plánování, Problém
obchodního cestujícího, Zobecněný
problém obchodního cestujícího s
přednostmi

Překlad názvu: Problémy klasického
plánování jako zobecněný problém
obchodního cestujícího s přednostmi
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Chapter 1

Introduction

We recognize two fundamentally different approaches to planning. The
first one is domain-specific planning, where we address each problem with
representations and techniques tailored specifically for this problem. The
second one is domain-independent planning. This is a general approach to
planning that is capable of solving different problems. Its input is only a
problem specification and knowledge about a domain, and it is using abstract
generic representations and models of actions for finding a plan.

Domain-specific planning is an approach that is highly used because it is
generally more efficient than using the domain-independent planning for solv-
ing the same problem. However, this approach has its drawbacks. Primarily,
it is very costly to address every problem separately instead of reusing the
same approach. Additionally, some commonalities of various problems may
not be taken into account in the domain-specific planning. On the contrary,
the domain-independent planning excels at its flexibility and operates on a
more abstract level. Therefore, it can address various commonalities much
better. However, all of this is at the cost of the lower overall efficiency of
solving problems due to the generality of representations that are used.

For the domain-independent planning, it is beneficial if we can find classes of
problems that can be planned using some existing domain-specific approach.
This combination has benefits of both domain-independent and domain-
specific planning. It has the same flexibility as domain-independent planning,
and only problems with specific properties are planned domain-specifically.
This is addressing the issue where various domain-specific approaches may
omit the shared commonalities of their problems while the domain-specificity
increases the planning efficiency.

Our goal was to find such classes of problems that can be solved using
variants of the traveling salesman problem. The traveling salesman problem
(TSP) is a problem of finding the cheapest Hamiltonian cycle in a graph. It
is a thoroughly studied problem, and there exist various high-quality solvers
for it. Besides the TSP, we have used a TSP variant called a generalized
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1. Introduction .....................................
traveling salesman problem with precedence conditions (PC-GTSP). This
problem, on top of the TSP, introduces a clustering of vertices in the graph
and partial ordering of these clusters. The solution to the PC-GTSP is the
cheapest Hamiltonian path that visits every cluster exactly once and the
clusters are visited in the correct order.

In this thesis, we have identified two distinct classes of problems defined in
the STRIPS planning language. The first one is called TSP-reducible STRIPS
problems, and we will show how to encode it as a TSP instance. Moreover,
we will prove that every solution to this encoding can be transformed into
an optimal plan of the original problem and vice versa. We will show that
an actual problem from the International Planning Competition (IPC) is
TSP-reducible.

The second identified class is called PC-GTSP-reducible STRIPS problems.
Similarly to the TSP-reducible problems, we will show how to encode it as a
PC-GTSP instance, and we will prove that every solution to this encoding is
transformable into an optimal plan and vice versa. For both of the identified
classes, we will show the relationship between the costs of solutions to their
encodings and the costs of their optimal plans.

In the last part, our implementation of the TSP-reducible and the PC-GTSP
reducible STRIPS problem encoding will be evaluated on the Visit-All TSP-
reducible IPC problem and the OpenStacks PC-GTSP-reducible IPC problem.
We will provide experimental results of our implementation and compare it
to the state-of-the-art domain-independent planner Fast-Downward.

The thesis is organized as follows. In Chapter 2, a summary of related works
is presented. It contains related works about planning and variants of the
traveling salesman problem. Afterward, in Chapter 3, we will formally define
all of the needed mathematical objects from the graph theory and the STRIPS
planning. The definition of TSP-reducible and PC-GTSP-reducible problems,
their encoding and related proofs and theorems will be laid out in Chapter 4
and Chapter 5, respectively. These two approaches will be experimentally
evaluated and their performance compared to the Fast-Downward planner in
Chapter 6. We will conclude our thesis in Chapter 7.
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Chapter 2

Related Works

After the introduction, let us give a summary of the works related to our
research. We will cover related works from the STRIPS planning, the auto-
mated planning, and the traveling salesman problem and its variations. For
the traveling salesman problem (TSP), we will discuss its formulations and
various heuristic approaches to solving the TSP. On top of that, some of the
reformulations between its variants will be discussed.

2.1 STRIPS Planning Language

A planner called Stanford Research Institute Problem Solver (STRIPS) was
created by Fikes and Nilsson (1971). This planner was using a new formal
language called STRIPS for an input problem specification. This planning
language has become popular for its simplicity yet expressiveness and is widely
used up to this date. A STRIPS instance is defined by four components - facts,
operators, an initial state, and a goal specification. Facts compose states, and
we switch between states using the operators. Bylander (1994) showed that
the STRIPS state space size and planning complexity is PSPACE-complete.
As we are usually unable to recreate the whole search space, the planning of
STRIPS problems requires the heuristic search to be even possible. An A*
search algorithm is widely used as the search algorithm in the state space.
There are various approaches in the current literature on how to create a
heuristic function used in the search itself. The ones that are of the highest
interest in this thesis are mostly related to abstractions and mutual exclusion
state invariants.

Using abstractions is one of the heuristic approaches. The idea behind this
approach is that, instead of finding a plan of the original problem, we consider
its smaller version. When we create such an abstracted smaller version of
the problem, we try to simplify states by dropping some of their distinctions.
However, for a good abstraction, it is necessary to minimize alterations of
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2. Related Works ....................................
state transitions. This approach is mostly used in optimal planning. Helmert
et al. (2007) proposed the general approach of deriving consistent heuristics.
These heuristics were formed using the abstract state spaces created from the
original transition system. They have also shown that experimental results of
heuristics derived by this approach are comparable with other state-of-the-art
heuristics.

Very useful for analyzing planning problems are mutual exclusion state
invariants (mutex groups). A mutex group is a set of facts in the STRIPS
problem such that at most one of the facts from the mutex group is present
in every reachable state.

Mutex groups provide information about the structure of the problem.
They are beneficial for various operations in planning. Edelkamp and Helmert
(2000) and Helmert (2009) showed that mutex groups are valuable for a
translation of planning problems to Finite Domain Representation. As shown
by Haslum and Geffner (2000), mutexes are also useful for the creation of
heuristic functions. Additionally, the benefits of using mutexes for a state
space pruning were shown by Alcázar et al. (2013). However, there is a
problem with finding mutex groups. The identification of maximum size
mutex groups is a PSPACE-complete (Fišer and Komenda, 2018) problem,
just as the complexity of the whole planning is.

The PSPACE-completeness is a drawback for efficient use in planning. It
was shown by Fišer and Komenda (2018) that there exists a type of mutex
groups called the fact-alternating mutex group (fam-group). This mutex
group type depends on the initial state, and the fam-group inference is
NP-complete. Additionally, Fišer and Komenda (2018) presented an ILP
inference algorithm that is complete with respect to maximal fam-groups.
These fam-groups can be used for the preprocessing of STRIPS problems.

There are numerous automated planners, and each of them differs in used
types of search, implemented heuristics, and preprocessing methods. An
International Planning Competition (IPC) evaluates these state-of-the-art
planners on many benchmarking problems. This competition is held every two
to four years during the International Conference on Planning and Scheduling
(ICAPS). The competition consists of several tracks. We will be interested
in the classical track. One of the most successful planners is the planner
Fast-Downward (Helmert, 2009, 2006) and its extensions SymBA* (Álvaro
Torralba et al., 2014) and Mercury (Katz and Hoffmann, 2014).

In this thesis, the STRIPS problems will be transformed into the traveling
salesman problem and its variations. Huang et al. (2012) took a similar
approach. In their approach, problems in the STRIPS formalism were encoded
into SAT encoding scheme based on SAS+. The encoding was experimentally
shown to provide a significant improvement over the state-of-the-art STRIPS
encoding schemes.
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.............................. 2.2. Traveling Salesman Problem

2.2 Traveling Salesman Problem

The traveling salesman problem (TSP) is a widely studied problem. It is a
problem of finding the cheapest Hamiltonian cycle in a graph. The very first
formulation of the TSP was given by Dantzig et al. (1954), and they proposed
an integer linear programming (ILP) based formalism for solving the problem.
Using this ILP method, they have found a solution for an instance of 49 cities
spread across 48 US states. The second very important ILP formulation was
given by Miller et al. (1960). The importance of this formulation was in its
polynomial number of conditions. On the contrary, the representation by
Dantzig et al. (1954) has an exponential number of conditions.

These ILP formulations will be discussed more in-depth later on. Now, let
us introduce various heuristic-based approximation algorithms that are used
for solving the TSP.

The simplest approach is the nearest neighbor greedy algorithm (NN). This
algorithm has polynomial θ(n2) asymptotic time complexity. However, it
gives us no guarantee for the quality of the solution. Moreover, it may not
find a solution to the TSP at all, even if the solution exists. The likelihood
of finding the solution is increased using a small variation called a repetitive
nearest neighbor algorithm (RNN). In this algorithm, the nearest neighbor
algorithm is started from all of the nodes in the graph. The best solution
among them is selected.

Gutin et al. (2002) analyzed the greedy type heuristics in several ex-
periments. The nearest neighbor, repetitive nearest neighbor, and greedy
algorithm were shown to provide poor results on general instances of the
symmetric TSP and the asymmetric TSP (ATSP). Additionally, they have
shown that in the Euclidean space, the nearest neighbor algorithm provides
sufficient quality of the results.

In practice, these greedy-type algorithms are used for finding the initial
solution for other heuristic methods. However, even this use of greedy
algorithms should be done with caution, as shown by Bang-Jensen et al.
(2004). In their study, the greedy algorithm was producing the worst possible
solutions for the traveling salesman problem.

Christofides (1976) proposed another widely used algorithm. This algorithm
is used for the TSP defined in the metric space, and it provides a guarantee
for the quality of the solution. The solution can not be worse than 3/2 of the
cost of the optimal solution. The algorithm is based on finding a minimum
spanning tree of the graph, a minimum weight-perfect matching on a subgraph
induced by a set of vertices of an odd degree, and then finding an Eulerian
circuit.

An extensive set of algorithms used for finding a solution of the TSP is
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2. Related Works ....................................
based on iterative improvement. These are local-search based heuristics using
reordering of selected vertices in the cycle. The most notable is the 2-opt
algorithm proposed by Croes (1958). This algorithm is iteratively finding two
pairs of vertices such that the edges in Hamiltonian path cross each other.
These vertices are reordered every step of the algorithm, so the cross-over does
not happen. The 3-opt algorithm (Lin, 1965) operates in the same way. Only
instead of two pairs, three pairs are reordered. These iterative algorithms
were generalized by Lin and Kernighan (1973) as Lin–Kernighan heuristic.
The Lin–Kernighan heuristic, or k-opt, reorders k different pairs of vertices
in the cycle. The Lin–Kernighan heuristic is one of the best heuristics used
for the symmetric TSP.

On top of these algorithms, the TSP can be solved by multiple probabilistic
techniques. Notably, by genetic algorithms. Genetic algorithms are inspired
by biological evolution and mostly depend on three aspects: a selection, an
initial population, and a mutation function.

Various interesting works about genetic algorithms are done on the topic
of the TSP. Among others, Razali et al. (2011) provides a comparison of
various selection strategies used for solving the TSP. The genetic algorithm
proposed by Deng et al. (2015) uses the k-means clustering for the generation
of the initial population and provides a very significant error improvement
compared to more simple methods of the initial population selection. On the
topic of mutation, there is a notable article by Liu and Zeng (2009). They
have used a reinforced mutation that outperformed various different solvers
on TSPLIB instances in both the quality of the solution and the computation
time.

On top of the described algorithms and approaches, there are two robust
solvers—namely, a solver Concorde (Applegate et al., 2006) and a solver
LKH2 (Helsgaun, 2000). The solver Concorde is an award-winning optimal
solver for the TSP. This solver was able to find an optimal solution for all
of the problems provided in the TSPLIB (Reinelt, 1995). The largest one of
them contained more than 85000 vertices (Applegate et al., 2011). In contrast,
the LKH2 solver is an approximate solver for solving the TSP. The solver
LKH2 is an implementation of Lin-Kernighan heuristic. The heuristic is
adaptive, so it is able to decide how many different paths should be swapped
each round. In the year 2017, the LKH2 solver was given an extension called
LKH3 that is capable of solving more TSP variants. This extension will be
discussed more in-depth later on.

2.3 TSP Transformations

Speaking of different TSP variants, Ilavarasi and Joseph (2014) surveyed
many different forms of the traveling salesman problem. However, we will
focus only on three of them.
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................................. 2.3. TSP Transformations

The first one is the generalized traveling salesman problem (GTSP). The
GTSP contains several pairwise disjoint clusters of vertices. The goal is to
find a Hamiltonian cycle going trough exactly one vertex in every cluster.
The second one is the precedence constrained traveling salesman problem
(PC-TSP), where on top of the normal TSP, we have constraints enforcing
precedence of vertices in the Hamiltonian path. The Hamiltonian path is
typically used instead of the Hamiltonian cycle because of the precedence.
Because we can enforce constraints on top of any TSP variant, a similar
problem to PC-TSP and GTSP is precedence constrained generalized traveling
salesman problem (PC-GTSP). In the PC-GTSP, constraints are enforcing
the precedence of clusters of vertices instead of the vertices themselves.

Even though the TSP is solved in numerous studies, the more complex
the variant of the TSP is, the less it is explored. However, in the current
literature, there are several proposed transformations between the variants of
the TSP we are interested in.

Noon and Bean (1993) proposed a transformation of the GTSP to the
ATSP. The main idea of this transformation is to create a zero cost directed
cycle in every cluster, so it is assured that every vertex within a cluster is
visited before the next cluster. This transformation does not add any new
vertices, and it only creates at most |V | new edges, where |V | is the number
of vertices of the original graph.

There are multiple transformations from the ATSP to the TSP. The original
transformation was proposed by Karp (1972). It splits every vertex into
three distinct vertices. In this split, one vertex acts as an input vertex,
one as a connection vertex and one as an output vertex. Clearly, this
transformation triples the size of the whole instance as the number of vertices
of the transformed problem is 3|V |, where |V | is the number of vertices of
the original graph.

Better transformations introduce less than three vertices. The first one was
designed by Jonker and Volgenant (1983) and Kumar and Li (1996). These
transformations improve the number of vertices added. Each vertex is split in
half to an input and an output vertex. Between these two vertices, an edge
with a sufficiently high cost M is placed. For an asymmetric instance, these
transformations are capable of creating a symmetric TSP instance with size
2|V |, where |V | is the number of vertices of the original graph.

Additionally, based on the experimental testing conducted by Fischetti
et al. (2007), the transformation by Jonker and Volgenant (1983) produces
TSP instances that are generally faster to solve than the ones produced by
the transformation by Karp (1972).
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2. Related Works ....................................
2.4 TSP ILP Approaches

Having discussed several transformations between some of the TSP variants,
we would like to show some ways how the variants we are interested in are
solved. First of all, we will discuss ILP approaches and then the non-ILP
ones.

Dantzig et al. (1954) proposed the first ILP ATSP representation. This
representation uses n2 binary variables xij representing edges between vertices
and n2 variables cij representing the costs of edges between two vertices, where
n is the number of vertices. A problem with this formulation is that it uses
the exponential number of sub-tour elimination constraints.

minimize
n∑

i=1

n∑
j=1

cijxij

subject to
n∑

i=1
xij = 1, j = 1, . . . , n

n∑
i=1

xij = 1, i = 1, . . . , n∑
i∈S

∑
j∈S

xij ≤ |S| − 1, S ⊂ V, S 6= ∅

xij ∈ {0, 1}, i, j = 1, . . . , n

This representation is the foundation for all of the following representations.
Despite having an exponential number of constraints, several LP relaxations
are proposed by transforming some of the constraints. These transformations
produce the LP relaxation of problems like a Min-Sum Assignment Problem
or an r-SAP (Carpaneto and Toth, 1987; Edmonds, 1967). The asymptotic
complexity of these relaxations ranges between O(n2) and O(n3).

Miller et al. (1960) introduced the first polynomial representation. This
representation substituted sub-tour elimination constraints in Dantzig repre-
sentation using O(n2) constraints and introduced n− 1 new real variables ui,
i ∈ {2, . . . , n}, representing the order of cities in the tour.

minimize
n∑

i=1

n∑
j=1

cijxij

subject to
n∑

i=1
xij = 1, j = 1, . . . , n

n∑
j=1

xij = 1, i = 1, . . . , n

ui − uj + (n− 1)xij ≤ n− 2, i, j = 2, . . . , n
xij ∈ {0, 1}, i, j = 1, . . . , n

8



................................. 2.4. TSP ILP Approaches

This representation was further improved by Gouveia and Pires (1999,
2001), and it has increased the tightness of the LP relaxation.

Sarin et al. (2005) suggested an ILP ATSP representation with a polynomial
number of constraints. Their representation works on a complete graph,
and the system of their constraints is as much expressive as the sub-tour
elimination constraint proposed by Dantzig. It contains two binary variables
x and y. The total number of both variables is n2. The variable xij represents
whether the city i directly precedes the city j in a tour. The variable yij

means whether the city i precedes the city j, but not necessarily directly.
The variables cij are the same as in the representation proposed by Dantzig
et al. (1954).

minimize
n∑

i=1

n∑
j=1,j 6=i

cijxij

subject to
n∑

i=1,i 6=j

xij = 1, j = 1, . . . , n

n∑
j=1,j 6=i

xij = 1, i = 1, . . . , n

yij ≥ xij , i, j = 2, . . . , n, i 6= j
yij + yji = 1, i, j = 2, . . . , n, i 6= j
yij + yjk + yki ≤ 2, i, j, k = 2, . . . , n,

i 6= j 6= k
xij ∈ {0, 1}, i, j = 1, . . . , j
yij = 0, i, j = 1, . . . , n, i 6= j

This representation contains O(n3) constraints and provides a tighter
relaxation than Gouveia and Pires (1999). Additionally, Sarin et al. (2005)
has presented an extension of this representation for the PC-ATSP. This
extension has been accomplished by introducing constraints on variables yij

by setting them 0 if there is a precedence constraint between j and i.

The representation created by Sarin et al. (2005) was a used for the GTSP
and the PC-GTSP ILP representation introduced by Salman (2015). Their
formulation needs O(n2 + 2m2) variables and O(n2 +m3) constraints, where
n is the number of cities, and m is the number of clusters. This is due to
the introduction of new variables for direct movement between clusters and
replacing existing y variables by variables describing if one cluster precedes
the other in the tour. The largest GTSP instance solved by this formulation
had size n = 755 and m = 49, as reported by Salman (2015).

9



2. Related Works ....................................
2.5 Non-ILP TSP Approaches

So far, we have discussed only ILP solutions of TSP variants. In this section,
various approaches are shown.

Multi-purpose approximate solver LKH2 (Helsgaun, 2000) is a solver that
is able to solve TSP and ATSP instances. This solver is an implementation
of the Lin-Kernighan heuristic. This heuristic is a generalization of 2-opt
and 3-opt local search algorithms. The heuristic is adaptive, so it is able to
decide how many different paths should be swapped each round. In 2017, the
original solver was extended (Helsgaun, 2017), so it accepts more than thirty
different TSP variants. The PC-ATSP is one of the supported problems.
Unfortunately, no description of the solving mechanisms of this LKH-3 solver
is provided.

Charikar et al. (1997) studied the constrained version of the TSP. In this
work, multiple approximation heuristics are compared. The constrained TSP
has shown to be difficult for approximation, as none of the theoretically
motivated heuristics has been proven to be better than a simple nearest
neighbor greedy algorithm.

Ascheuer et al. (2000) proposed a branch and bound algorithm for solving
the PC-ATSP. Their algorithm works on the ILP definition by Dantzig.
Optimal solutions to instances ranging between 100 and 200 cities were
obtained using this algorithm.

Castelino et al. (2003) examined GTSP with and without precedence
constraints. Their work is on the domain of the laser cutting problem that
has several simplifications of the GTSP. First of all, all of the distances
between vertices are non-zero positive numbers. Additionally, all of the
vertices are in the Euclidean space, and thus the distance matrix is symmetric.
The more specific transformation procedure from the GTSP to the TSP was
provided utilizing these attributes. After this transformation, the precedence
constraints were introduced. For solving the TSP, the LKH2 solver was used,
and for the constrained version, the heuristics algorithms from Ascheuer et al.
(2000) were used. TSP instances of size up to 1000 vertices were solved with
difference lower than one percent from optimum and PC-ATSP instances of
size up to 200 vertices were solved to their optima using these methods.

Shobaki and Jamal (2015) studied an exact algorithm for minimization
of the energy switching problem in compilers. They proposed a branch and
bound algorithm. Based on their experimental tests, this algorithm gives
better results than ILP formulations. It optimally solves instances with size
up to 598 vertices.
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Chapter 3

Background

In the previous chapter, we have laid out a summary of works related to our
research. In this chapter, we will introduce formal definitions of the discussed
problems. First, we will establish definitions of terms from the graph theory
and terms related to the traveling salesman problem (TSP) and its variants.
Afterward, we will provide definitions related to STRIPS planning.

3.1 Graph Background

The whole graph theory is built upon the definition of a graph. In this thesis,
we will use directed graphs. They will be necessary for defining TSP instances
transformed from STRIPS problems.

A directed graph is a tuple of a set of vertices and a set of edges, where
edges are pairs of vertices. For the graph, we define a cost function that
assigns costs to graph edges. Similarly, every edge is assigned a label. This
labeling of edges will be used for mapping sequences of operators from the
STRIPS problem to edges in the transformed TSP instances.
Definition 3.1 (Directed Graph). A directed graph G is a tuple G = 〈V,E〉,
where V is a finite set of vertices and E is a finite set of edges. Then the edge
e ∈ E is a tuple e = 〈v, v′〉, where v, v′ ∈ V . The costs of edges are defined
by a function c : E → R. An edge e ∈ E has a label l(e).

An edge e = 〈v1, v2〉 ∈ E is incident with the vertex v ∈ V if either v1 = v
or v2 = v.

A special type of a directed graph is a complete directed graph. This is a
directed graph that contains an edge between every pair of its vertices.
Definition 3.2 (Complete Directed Graph). Given a directed graph G = 〈V,E〉,
then G is a complete directed graph if E = {〈v, v′〉 | v, v′ ∈ V, v 6= v′}.

11



3. Background .....................................
If a graph does not contain an edge that starts and ends in the same vertex,

then the graph is simple. In our transformations from STRIPS problems into
TSP instances, we will encounter only graphs that are complete and simple.
Definition 3.3 (Simple graph). Given a directed graph G = 〈V,E〉, then G is
a simple graph if there is not any edge e = 〈v, v′〉 ∈ E such that v = v′.

With the graphs defined, let us define various types of sequences of edges
in a graph. Sequences of incident edges in the graph are called walks. We
distinguish types of walks based on additional conditions that the walk meets.
These conditions are enforced on the number of times every vertex, or every
edge is visited. A path is a walk that visits every vertex at most once, and
a tour is a walk that visits every edge at most once. The formal definition
follows.
Definition 3.4 (Walk, path and tour). Given a graph G = 〈V,E〉, then a
walk between two vertices v1, vk ∈ V is a sequence of vertices and edges
p = (v1, e1, v2, e2, . . . , ek−1, vk), where vi ∈ V and ei = 〈vi, vi+1〉 ∈ E. The
cost of the walk is c(p) =

∑k−1
i=1 c(ei). The walk is called a path if every vertex

is visited at most once. If there are no repeated edges in the walk, it is called
a tour.

The cheapest path between two vertices v, v′ is a path p = (v, e1, . . . , ek−1, v
′)

such that c(p) is minimal.

A special type of walk is a cycle, which is a walk that starts and ends in
the same vertex.
Definition 3.5 (Cycle). Given the walk p = (v1, e1, v2, e2, . . . , ek−1, vk) in the
graph G. The walk p is a cycle if v1 = vk for k > 1.

3.2 Traveling Salesman Problem

Now, we can start with definitions of terms related to the traveling salesman
problem. In the previous chapter, we have already outlined that the TSP is
a problem of finding the cheapest Hamiltonian cycle. A Hamiltonian cycle
is a cycle that visits every vertex of a graph exactly once. The definition of
the Hamiltonian cycle follows as well as the definition of the closely related
Hamiltonian path.
Definition 3.6 (Hamiltonian path). Given a directed graph G = 〈V,E〉 and a
path p = (v1, e1, . . . , ek−1, vk), then the path p is Hamiltonian if {v1, . . . , vk} =
V and k = |V |.
Definition 3.7 (Hamiltonian cycle). Given a directed graph G = 〈V,E〉
and a cycle p = (v1, e1, . . . , ek−1, vk, ek, v1), then p is Hamiltonian cycle
if {v1, . . . , vk} = V and k = |V |.

It is obvious that the Hamiltonian cycle is a Hamiltonian path with an
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.............................. 3.2. Traveling Salesman Problem

extra edge to the first vertex. Note that the Hamiltonian path in the graph
G = 〈V,E〉 contains exactly |V |−1 edges, and the Hamiltonian cycle contains
exactly |V | edges. Karp (1972) proposed the transformation from the problem
of finding the Hamiltonian cycle into the problem of finding the Hamiltonian
path and vice versa.

Now, we can formally define the traveling salesman problem.
Definition 3.8 (Traveling salesman problem). Given a complete directed graph
G = 〈V,E〉, where V is a set of vertices and E is a set of edges. Then the
traveling salesman problem is a problem of finding a Hamiltonian cycle of
the graph G such that its cost is minimal.

With the TSP defined, it is possible to show how the other TSP variants
change the original definition. If for every pair v, v′ ∈ V , the cost function c is
defined such that c(〈v, v′〉) = c(〈v′, v〉), then the traveling salesman problem
is called as symmetric. If this condition is not enforced, the traveling salesman
problem is called asymmetric (ATSP).

If we define a partitioning of vertices V into m clusters C = {C1, . . . , Cm}
such that C1 ∪ · · · ∪ Cm = V , Ci ∩ Cj = ∅ for every i, j, i 6= j, and Ci 6= ∅
for every Ci ∈ C. The generalized traveling salesman problem (GTSP) is a
problem of finding minimum cost cycle that visits exactly one vertex from
every cluster Ci ∈ C.

For the precedence constrained traveling salesman problem (PC-TSP),
we define precedence constraints of every vertex vi as PVi = {vj | vj ∈
V, vj has to precede vi in the cycle}. The PC-TSP is a problem of finding
the Hamiltonian path that visits every vertex and the precedence conditions
are satisfied.

In the generalized version (PC-GTSP), the precedence constraints are
defined on a cluster level. Precedence constraints of every cluster Ci are a set
PCi = {Cj | Cj ∈ C, cluster Cj precedes
cluster Ci in the cycle}. The PC-GTSP is a problem of finding the Hamil-
tonian path that visits exactly one vertex from every cluster Ci ∈ C and
satisfies all of the precedence conditions.

The TSP is the NP-hard problem, and so are the other TSP variants (Karp,
1972). From the definitions, it is apparent that the TSP is a special case
of the ATSP. Furthermore, the ATSP is a special case of the GTSP with
partitioning C = {C1, . . . , Cm} such that m = |V | and |Ci| = 1 for every
i ∈ {1, . . . ,m}. Additionally, the precedence constrained version of each
problem is a more general version of the original problem. This applies as
the original problem is constrained problem with constraints PVi = ∅ and
PGi = ∅ for every i ∈ {1, . . . ,m}. Sometimes, the precedence constrained
version of ATSP is also called the sequential ordering problem (SOP).

The formal definition of the PC-GTSP is as follows. We will use the
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3. Background .....................................
definition of the PC-GTSP using the Hamiltonian path rather than using the
Hamiltonian cycle as it is easier to work with.
Definition 3.9 (Precedence constrained generalized traveling salesman problem).
Given a complete directed graph G = 〈V,E〉 with set of vertex clusters C
and their precedence conditions PCi ⊆ C for every Ci ∈ C, and given the
cheapest Hamiltonian path p = 〈v1, e1, . . . , em, vm+1〉 in the graph G. Then p
is a solution to the PC-GTSP instance defined by G if the following conditions
are satisfied:..1. C = {C1, . . . , Cn}, C1 ∪ · · · ∪ Cn = V , and Ci ∩ Cj = ∅ for every

i, j ∈ {1, . . . , n}, i 6= j...2. For every cluster Ci ∈ C, there exists exactly one vertex v ∈ p such that
v ∈ Ci...3. For every two vertices vl, vk ∈ p such that vl ∈ Ci and vk ∈ Cj it holds
that l < k if Ci ∈ PCj .

3.3 STRIPS Background

Now, let us move from the graph theory to the STRIPS planning. In this
section, we will provide definitions related to the STRIPS planning.

We will start with the definition of the STRIPS planning problem.
Definition 3.10 (STRIPS problem). An instance of a STRIPS planning prob-
lem Π is a tuple Π = 〈F ,O, I,G〉, where F is a finite set of facts, O is a finite
set of operators, I ⊆ F is the initial state, and G ⊆ F is a goal specification.

A state s is a set of facts s ⊆ F . A state s is called a goal state if G ⊆ s.

An operator o is a triple o = 〈pre(o), add(o), del(o)〉, where:

. pre(o) ⊆ F is a set of preconditions of the operator o.. add(o) ⊆ F is a set of add effects of the operator o.. del(o) ⊆ F is a set of delete effects of the operator o.

An operator o is applicable in a state s if pre(o) ⊆ s. The resulting state
of the operator application is a state o[s] = (s \ del(o)) ∪ add(o).

In the whole thesis, we assume that every operator o is well-formed, i.e.,
add(o) ∩ pre(o) = ∅ and add(o) ∩ del(o) = ∅.

An operator sequence π = 〈o1, o2, . . . , on〉 is applicable in a state s0 ⊆ F
if there are states s1, . . . , sn such that si = oi[si−1] for every i ∈ {1, . . . , n}.
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................................. 3.3. STRIPS Background

The resulting state of the operator sequence π applied in a state s0 is denoted
as a state sn = π[s0].

Additionally, if an operator sequence π is empty, then it is applicable in
every state s and s = π[s].

A plan of a STRIPS problem is an operator sequence π such that G ⊆ π[I].

A state s is a reachable state if there exists an operator sequence π such
that s = π[I].

Multiple operator sequences can be concatenated. This operation preserves
the ordering of the operator sequences and all of the operators inside them.
The result of the concatenation is also an operator sequence.
Definition 3.11 (Concatenation of operator sequences). Given operator se-
quences π1, . . . , πn, where πi = 〈oi

1, . . . , o
i
ki
〉 for i ∈ {1, . . . , n}. Their concate-

nation is defined as seq(π1, . . . , πn) = 〈o1
1, . . . , o

1
k1
, o2

1, . . . , o
2
k2
, . . . , on

1 , . . . , o
n
kn
〉.

Some sets of facts possess special properties. Especially, mutex groups are
very useful for the STRIPS problem analysis and decomposition. A mutex
group is a set of facts such that every reachable state contains at most one of
them.
Definition 3.12 (Mutex Group). A set of facts S ⊆ F is a mutex group if it
holds that |S ∩ s| ≤ 1 for every reachable state s ⊆ F .

Fišer and Komenda (2018) examined the mutual exclusion state invariants.
They have shown that the inference of mutex groups is PSPACE-complete,
i.e., the inference is as hard as deciding whether the STRIPS problem has
a plan. Furthermore, they proposed state invariants with lower asymptotic
complexity. These invariants are called fact-alternating mutex groups (fam-
groups). A fam-group is a set of facts such that the initial state contains at
most one of its facts, and every operator adds less or as many of these facts
as it deletes. Fišer and Komenda (2018) also proved that the inference of
fam-groups is NP-complete and that every fam-group is a mutex group.
Definition 3.13 (Fact-Alternating Mutex Group). A set of facts S ⊆ F is a
fact-alternating mutex group if |S ∩ I| ≤ 1 and if for every operator o ∈ O it
holds that |S ∩ add(o)| ≤ |S ∩ pre(o) ∩ del(o)|.

From the state invariants, let us move to transition systems and projections.

A transition system is a structure containing a set of states and labeled
transitions between them. Exactly one of the states is the initial state and
some of the states are goal states. Transition systems are structures used
in various fields. In this thesis, they will be used for modeling transitions
between states in the state space of the STRIPS problem.
Definition 3.14 (Transition system). A transition system T is a tuple T =
〈S,L, T, I,G〉. The set S defines states of the system, L is a set of labels and
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3. Background .....................................
T is a transition relation T ⊆ S × L× S. I is an initial state I ∈ S and G is
a set of goal states G ⊆ S. Each label is given a cost by a function c : L→ R.

If a transition t = (s, o, s′) then we call the transition t as a transition
between states s and s′. The transition t starts in the state s and ends in the
state s′. Additionally, we call the state s as a start state of t, and the state
s′ as an end state of t.

Two transition systems with the same set of labels can be further com-
posed to form a new transition system. This composition is done using a
synchronized product.
Definition 3.15 (Synchronized product). Given two transition systems T1 =
〈S1, L, T1, I1, G1〉 and T2 = 〈S2, L, T2, I2, G2〉, the synchronized product T1 ⊗
T2 = T , where T is a transition system T = 〈S,L, T, I,G〉 such that S =
S1×S2, T = {((s1, s2), l, (s′1, s′2)) | (s1, l, s

′
1) ∈ T1, (s2, l, s

′
2) ∈ T2}, I = I1×I2

and G = G1 ×G2.

For every transition system, we distinguish whether the transition system
is cyclic or acyclic. This property is similar to the cyclic and acyclic graphs.
In the cyclic graph, there exists a vertex and a nonempty path that both
starts and finishes in this vertex. The transition system is cyclic if there exist
a state s and a nonempty sequence of transitions between states such that
s is the start state of the first transition in this sequence, and s is the end
state of the last transition in this sequence. If no such state exists, then the
transition system is acyclic. These properties are formally defined as follows.
Definition 3.16 (Cyclic and acyclic transition system). Given a transition
system T = 〈S,L, T, I,G〉, T is called cyclic if there exists a state s0 ∈ S,
a sequence of states (s0, s1, . . . , sn) ∈ Sn, where sn = s0, and a sequence
of labels (l0, . . . , ln−1) ∈ Ln such that (si, li, si+1) ∈ T and si 6= si+1 for all
i ∈ {0, . . . , n− 1}. Otherwise, we say that the transition system is acyclic.

The cyclicity and the acyclicity of transition systems will be used to define
the form of our STRIPS problems. Most of the transition systems that will be
described will need to be acyclic. Their acyclicity will be a sufficient condition
for the STRIPS problem to be solvable as an instance of a TSP variant.

For every transition system, it is possible to create its abstractions. Ab-
stractions are transition systems that omit some of the properties of its
original transition system. The abstraction usually has a lower number of
states and the mapping between states of the original transition system to
the abstraction is defined using abstraction function. This function must be
defined such that it preserves transitions between the original states and their
abstracted states.
Definition 3.17 (Abstraction and abstraction function). Given two transition
systems T1 = 〈S1, L, T1, I1, G1〉 and T2 = 〈S2, L, T2, I2, G2〉 and function
α : S1 → S2, we denote T2 as an abstraction of T1 with an abstraction function
α if, for every transition (sa, l, sb) ∈ T1, it holds that (α(sa), l, α(sb)) ∈ T2,
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................................. 3.3. STRIPS Background

I2 = {α(s) | s ∈ I1} and G2 = {α(s) | s ∈ G1}.

In the following chapters, abstractions will be used for creating projections
to sets of facts of the STRIPS problem.

So far, the definitions considered the general transition system. The
following part will specifically focus on the transition systems related to
STRIPS planning problems.

The first definition specifies the transition system of a STRIPS problem.
This transition system has operators as labels and states are sets of facts. The
initial state is the same as the initial state of the STRIPS problem. Every
state that contains all of goal facts is considered as a goal state. A transition
labeled by the operator o leading from state s to s′ if o[s] = s′.
Definition 3.18 (Transition system of a STRIPS problem). Given a STRIPS
problem Π = 〈F ,O, I,G〉, the transition system of the problem Π is the
transition system T (Π) = 〈S,L, T, I,G〉 such that S = 2F , L = O, I = I,
G = {s ∈ S | G ⊆ s}, and for all states si ∈ S, it holds that (si, o, sj) ∈ T iff
o[si] = sj .

If a transition t is labeled by an operator o then we call the operator o as
an operator of the transition t.

A special type of abstraction is a projection. A projection to a set of facts
is an abstraction of the original transition system with states containing
only facts from that set. Projections have a specific form of their abstraction
function. It is defined by an intersection with the set of facts we are projecting
into.
Definition 3.19 (Projection). Given a STRIPS problem Π = 〈F ,O, I,G〉 and
its transition system T (Π), a projection to the set of facts F ′ ⊆ F is an
abstraction T (Π,F ′) of T (Π) with an abstraction function α(s) = s ∩ F ′.

A transition system of a STRIPS problem will be used as a primary tool to
define the desired structure of the problems that can be solved using the TSP
variants. The structure will be defined using projections of this transition
system to mutex groups. Additionally, all of the problem properties will be
defined using these projections.

In the same way, as we define a path in the graph, we can define a path in
a transition system of a STRIPS problem. Informally, we can consider states
as vertices and transitions as edges. A more formal definition is given next.
Definition 3.20 (Path in transition system of STRIPS problem). Given a transi-
tion system T (Π) = 〈S,O, T, I,G〉, the path in T from s0 ∈ S to sn ∈ S is a
sequence of transitions p = 〈t1, . . . , tn〉 such that ti = (si−1, oi, si) ∈ T for i ∈
{1, . . . , n}. We say that the path is the cheapest if the cost c(p) =

∑n
i=1 c(ti)

is minimal. The cheapest path from s0 to sn is denoted by SP (s0, sn). The
operators of the path p is the operator sequence 〈o1, . . . , on〉.
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3. Background .....................................
In the transition system of a STRIPS problem, we recognize dependency

and independency of operators and transitions. We call an operator as an
operator dependent on a set of facts if it contains a fact from this set either
in its preconditions, add effects, or delete effects. A transition is dependent
on a set of facts if it is labeled by the operator that is dependent on this set.

Additionally, we recognize operators partially dependent on a set of facts.
These operators contain a fact from the set only in their precondition.

The transition in a transition system T (Π,F ′) is independent if there is no
set of facts disjoint with F ′ that the transition would be dependent on.
Definition 3.21 (Dependent and independent operator and transition). Given a
STRIPS problem Π = 〈F ,O, I,G〉, we call an operator o ∈ O as dependent on
a subset of facts F ′ ⊆ F if add(o)∩F ′ 6= ∅ or pre(o)∩F ′ 6= ∅ or del(o)∩F ′ 6= ∅.
The operator o is partially dependent on F ′ if add(o) ∩ F ′ = del(o) ∩ F ′ = ∅
and pre(o) ∩ F ′ 6= ∅.
Given a projection T (Π,F1) = 〈S1,O, T1, I1, G1〉, a transition t = (s, o, s′) ∈
T1, s 6= s′, and a subset of facts F2 ⊆ F ,F1 ∩ F2 = ∅, then the transition t is
(partially) dependent on F2 if the operator o is (partially) dependent on F2.
If no such set of facts F2 exists, we denote the transition t as an independent
transition.
Lemma 3.22. Every operator o ∈ O partially dependent on F2 ⊆ F is
dependent on F2.

Proof. The lemma obviously holds according to Definition 3.21.

We have shown all of the definitions needed for the next chapters. The
background of the graph theory and the STRIPS planning was covered.
Additionally, we have shown multiple variants of the TSP that will be discussed
in the rest of the thesis. In the next chapter, we will show the first set of
STRIPS problems called TSP-reducible problems. We will prove that these
problems can be solved using the TSP.
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Chapter 4

TSP-Reducible Problem

In the previous chapter, we have covered the graph theory and STRIPS
background. In this chapter, we will define a TSP-reducible STRIPS problem.
We will show that every TSP-reducible problem can be encoded into a TSP
instance, which is a graph. Additionally, the solution to this TSP instance
can be transformed into an optimal plan and vice versa.

An outline of the chapter is following. First of all, we will define the
TSP-reducible STRIPS problem. Afterward, we will define the encoding
for the TSP-reducible problem into the TSP instance. We will show that a
solution to the TSP instance can be transformed into an optimal plan in the
original STRIPS problem. We will also prove the transformation correctness.
A similar transformation will be shown in the other direction as well. Last but
not least, we will prove that an IPC problem called Visit-All is TSP-reducible.

4.1 Problem Definition and Encoding

A TSP-reducible problem is a STRIPS problem with several properties. Its
set of facts can be split into pairwise disjoint mutex groups. One of these
mutex groups, denoted as FP , is called positional, and the rest of them are
called acyclic. The positional mutex group does not contain any goal facts.
On the contrary, every acyclic mutex group contains exactly one goal fact.

The projection to an acyclic mutex group is an acyclic transition system and
is called acyclic projection. The acyclic projection contains exactly one pair
of states such that transitions between them are dependent on the positional
mutex group and have the same add effects. These two states are called
central states. Additionally, a transition between the central states must
be in every path from the initial to the goal state in the acyclic projection.
Every other transition between two distinct states in the acyclic projection is
independent.
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4. TSP-Reducible Problem ................................
The projection to the positional mutex group is called positional projection.

Operators of transitions leading to the same state have the same add effects.

The way the TSP-reducible problem is defined creates an important prop-
erty. The transitions in the positional projection only affect the transition
between central states in the acyclic projections. This property ensures that
we can freely change between states in the positional projection while enabling
the transition between central states in every acyclic projection.

The idea behind solving the TSP-reducible problem is as follows. All of
the goal facts are in the acyclic mutex groups, and to reach them, we need
to enable the transition between the central states. As this transition is
dependent on the positional mutex group, it is necessary to find a path in
the positional projection such that this transition is enabled.

As a result, solving the TSP-reducible problem can be split into two tasks.
The first one is fulfilling the path between initial state and goal state in
every acyclic projection. The second one is finding a path in the positional
projection such that the transition between central states in every acyclic
projection is enabled. These two tasks are interwoven in the whole section.
Some of the lemmas that we will prove might be related only to one of the
tasks. Therefore, whenever we will relate to these tasks we will call them as
Acyclic task and Positional task, respectively.

Now, we have informally described the TSP-reducible problem, the formal
definition of the TSP-reducible problem follows.
Definition 4.1 (TSP-reducible problem). A STRIPS problem Π = 〈F ,O, I,G〉
is called as TSP-reducible problem if all of the following holds:

(i) There exists a set of mutex groups {FP ,F1, . . . ,Fk} such that Fi∩Fj = ∅
for i, j ∈ {P, 1, . . . , k}, i 6= j, and F = FP ∪ F1 ∪ · · · ∪ Fk. Additionally,
the mutex group FP is also a fam-group.

(ii) The projection T (Π,FP ) = 〈SP ,O, TP , IP , GP 〉 of a fam-group FP is
cyclic and the rest of the projections to mutex groups are acyclic and
form a set of acyclic projections AcyclicΠ = {T (Π,F1), . . . , T (Π,Fk)},
where each T (Π,Fi) = 〈Sgi ,O, Tgi , Igi , Ggi〉.

(iii) For every T (Π,Fi) ∈ AcyclicΠ, it holds that |Fi ∩ G| = |Ggi | = 1. For
the set of facts FP , it holds that FP ∩ G = ∅.

(iv) There is no transition t = (s, o, s′) ∈ TP , where s 6= s′, partially depen-
dent on acyclic mutex group.

(v) For every state s ∈ SP , and every two operators o, o′ ∈ O such that
(s′, o, s), (s′′, o′, s) ∈ TP where s 6= s′ and s 6= s′′, it holds that add(o) =
add(o′).

(vi) There exists an injective function γ : AcyclicΠ → FP . For every projec-
tion T (Π,Fi), there exist exactly two states s, s′ ∈ Sgi , s 6= s′ (called
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central states) such that every transition t = (s, o, s′) ∈ Tgi is dependent
on FP and γ(T (Π,Fi)) ∈ add(o). Every other transition between two
different states in Sgi is independent. Additionally, it holds that every
path from Igi to Ggi contains a transition between s and s′.

As we stated earlier, the positional mutex group is denoted as FP and the
positional projection as T (Π,FP ). Additionally, the acyclic mutex group will
be always denoted as Fi with index i ∈ {1, . . . , k} and the acyclic projection
to this mutex group will be denoted as T (Π,Fi).

We call the facts from the positional mutex group as positional facts. An
important observation is that, as all of the used projections are projections
to mutex groups, every reachable state in these projections contains at most
one fact.

From the definition, it is possible to make the following observation. For the
TSP-reducible problem Π, it holds that T (Π,FP )⊗T (Π,F1)⊗· · ·⊗T (Π,Fk) =
T (Π). This statement holds because F = FP ∪ F1 ∪ · · · ∪ Fk and the mutex
groups are pairwise disjoint (Helmert et al., 2007).

An example of a TSP-reducible problem is shown in Figure 4.1. The
problem contains three mutex groups and the figure contains the projections
to them. The figure contains a positional projection T (Π,FP ) and two acyclic
projections T (Π,F1) and T (Π,F2). The positional projection models three
positions. The position a and b are enabling positions of operators oa and ob,
respectively. The positional projection contains an initial state IP and does
not contain any state with a goal fact.

In the acyclic projection T (Π,F1), the central states are s and Gg1 . The
transition between different states that is dependent on the positional mutex
group is (s, oa, Gg1). The operator o0 is dependent only on F1.

The second acyclic projection contains the central states Ig2 and Gg2 . The
transition dependent on the positional mutex group is (Ig2 , ob, Gg2).

This example problem will be used as a running example. For the simplicity
of the notation in these examples, we will assume that every state in the
projections contains the fact of the same name, e.g., the state a in the
positional projection is the state {a}.

4.1.1 TSP-Reducible Problem Encoding

With the TSP-reducible problem specified, let us show its encoding. We will
encode the TSP-reducible problem as a traveling salesman problem instance,
which is a graph. The solution to this TSP instance can be converted back
into an optimal plan of the original TSP-reducible problem and vice versa.
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IP

a b

oa

o1 ob

o2

o0

o0 o0

(a) : Projection T (Π, FP )

Ig1

s

Gg1

o0

oa

{o1, o2, oa, ob}

{o1, o2, o0, ob}

{o1, o2, oa, ob}

(b) : Projection T (Π, F1)

Ig2

Gg2

ob

{o1, o2, oa, o0}

{o1, o2, oa, ob, o0}

(c) : Projection T (Π, F2)

Figure 4.1: An example of projections to three mutex groups in the TSP-
reducible problem. The transition system T (Π,FP ) is the positional projection,
others are acyclic projections. The edges between states contain the possible
labels of transitions between them.

First of all, we will outline how the encoding works. Then we formally
define the encoding itself. Afterward, we will prove that our assumptions
about the transformation of a solution into an encoding to an optimal plan
were correct.

We have already outlined that solving the TSP-reducible problem can be
split into two tasks. The Positional task is finding a path in the positional
projection such that the transition between central states in every acyclic
projection is enabled. The encoding exactly copies this idea.

To create an encoding of the TSP-reducible problem, we need to know
which positional facts are needed to enable these transitions between central
states. According to Definition 4.1, these positional facts are specified by
the function γ. This function assigns the positional fact to every acyclic
projection. And the transition between central states of the acyclic projection
has this positional fact in the add effect.

The encoding is a TSP instance defined as a complete graph with these
positional facts as vertices. For the simplicity of notation, from now on, we
will refer to a positional fact as of a vertex and vice versa.

Recall that every reachable state in the positional projection contains
exactly one fact. The edge between two facts f and f ′ has a label consisting
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of the operators of the cheapest path between {f} and {f ′} in the positional
projection. The cost of the edge is equal to the cost of this path. Informally,
every label of the edge from f to f ′ describes how to reach the state containing
f ′ from state containing f , and the cost of this edge is equal to the cost of
the needed operators.

Additionally, there is a vertex IP for the positional fact from the initial
state and a vertex vA whose function will be described later on.
Definition 4.2 (TSP encoding of TSP-reducible problem). Given the TSP-
reducible problem Π = 〈F ,O, I,G〉 with a set of acyclic projections AcyclicΠ
and a function gamma γ : AcyclicΠ → FP , let Enabling-positionsΠ =
{γ(T ) | T ∈ AcyclicΠ}. The TSP encoding TSP (Π) = 〈V,E〉 is a complete
graph with the cost function c : E → R and labeling function l where:

. V = Enabling-positionsΠ ∪ {IP } ∪ {vA}. E = {〈p, p′〉 | p, p′ ∈ V, p 6= p′}. For every edge e = 〈p, p′〉, p, p′ ∈ V \ {vA}, the label l(e) consists of the
operators of the cheapest path between states {p} and {p′} in T (Π,FP )
and c(〈p, p′〉) = c(l(〈p, p′〉)). If no such path exists, let c(〈p, p′〉) = ∞.
For other cases, c(〈vA, IP 〉) = 0 and for v ∈ Enabling-positionsΠ it holds
that c(〈vA, v〉) = c(〈v, vA〉) = |V |max{c(〈v′, v′′〉) | v′, v′′ ∈ V \{vA}, v′ 6=
v′′}+ 1 = M .

A solution to the encoding TSP (Π) is the cheapest Hamiltonian cycle in
the graph TSP (Π), such that no edge e in a cycle has the cost c(e) =∞.

From now on, we may sometimes call the TSP-reducible problem encoding
simply as the encoding.

The solution to this TSP instance is a cycle that visits every positional fact
needed to enable the transition between some central states. The labels of
the edges in this cycle are operator sequences that were used for transitions
in the positional projection.

Recall that the finding of the plan of TSP-reducible problem could be split
into two tasks. The labels of edges in the solution to the TSP-reducible
creates the path in the positional projection. This path enables the transition
between central states in every acyclic projection. Therefore, it corresponds
to the Positional task.

The Acyclic task is to fulfill the paths between initial state and goal state
in every acyclic projection. Based on Definition 4.1, every such path in an
acyclic projection contains only one transition dependent on the positional
mutex group. All of the other transitions are independent.

As a result, the operators of transitions before the transition between
central states can be applied anywhere in the plan before the enabling of the
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transition between central states. Similarly, the operators of transitions after
the transition between the central states can be applied anywhere in the plan
after the enabling of the transition between central states.

In the STRIPS plan, we do not have to visit the initial state once again,
when we have reached the goal state. If we did not require the solution to be
a cycle, we would obtain the cheapest Hamiltonian path problem. However,
since we want to solve the TSP, the vertex vA is used for reduction from
the cheapest Hamiltonian path problem to the cheapest Hamiltonian cycle
problem, as proposed by Karp (1972).

This vertex vA has the same cost of all the incident edges, except the edge
〈vA, IP 〉. This cost is defined to be a constant M that is larger than |V |
multiplied by the maximum cost of the edge in the graph. Recall that the
Hamiltonian cycle in a graph 〈V,E〉 has exactly |V | edges. As a result, M
is higher than the cost of any possible Hamiltonian cycle in the graph and
cannot alter the Hamiltonian path. This leads us to the following property of
all solutions to TSP (Π).
Lemma 4.3. Every solution to TSP (Π) contains the edge 〈vA, IP 〉.

Proof by contradiction. Let us assume that the cheapest Hamiltonian cycle
p is a solution to TSP (Π) that does not contain the edge 〈vA, IP 〉. For the
cost of this cycle, it holds that c(p) ≥ 2M because every edge incident with
vA other than 〈vA, IP 〉 has the cost c(e) = M .

As TSP (Π) is a complete graph, we may construct a different Hamiltonian
cycle p′ that contains the edge 〈vA, IP 〉. The cycle p′ contains only one edge
with a cost M . It holds that every Hamiltonian cycle contains exactly |V |
edges and M = |V |max{c(〈v′, v′′〉) | v′, v′′ ∈ V \ {vA}} + 1. Therefore, the
cycle p′ has the cost c(p′) < 2M ≤ c(p) because c(〈vA, IP 〉) < M . This is the
contradiction because the cycle p is not the cheapest.

An example of the encoding of the problem from Figure 4.1 is given in
Figure 4.2. Recall that the positions a and b are enabling positions. The
encoding TSP (Π) = 〈V,E〉 has V = {IP , vA, a, b}. Most of the edges e in
the figure are marked with two items in the format X;Y , where X is the
cost c(e) and Y is the label l(e). The rest of the edges are incident with vA

and are marked only with their cost. For example, the edge e = 〈a, b〉 has
the label l(e) = 〈o1, ob〉, because the shortest path between a and b in the
positional projection is 〈(a, o1, IP ), (IP , ob, b)〉.

The label is not present for edges incident with the vertex vA. The constant
M is for this example defined as M = 9 because |V | = 4 and the maximal
cost of the edge in the encoding is equal to 2.

An example of a solution to this encoding is a path that is marked red and
has a cost c = 1 + 2 +M + 0 = 3 +M .
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IP

vA

a b

1; 〈o1〉 1; 〈ob〉
1; 〈o2〉

2; 〈o2, oa〉

M

M

1; 〈oa〉

M

2; 〈o1, ob〉

0

Figure 4.2: The encoding of the TSP-reducible problem from Figure 4.1. Most
of the edges e in the figure are marked with two items in the format X;Y , where
X is the cost c(e) and Y is the label l(e). The rest of the edges are incident with
vA and are marked only with their cost.

4.1.2 Properties of the Encoding

In the previous subsection, we have formulated the idea behind the TSP-
reducible problem encoding. In this subsection, we will prove that all of our
assumptions were correct. Recall that we have distinguished two tasks that
are necessary for finding a plan of TSP-reducible problem.

The first lemma proven focuses on the Positional task. It states that the
label of an edge from f to f ′ is an operator sequence applicable to any state
containing the fact f . Additionally, the result of this application always
contains the fact f ′.

The solution of the encoding is a Hamiltonian cycle that visits every position
enabling the transition between central states in acyclic projections. What we
want to do in the transformation from the solution to the optimal plan is that
we concatenate all of the labels of the consequent edges in the solution. This
concatenation will be the core of the optimal plan that ensures the enabling
of transitions between central states.

For this reason, it is necessary, that for every two consequent edges e, e′
between positional facts such that e = 〈v, v′〉 and e′ = 〈v′, v′′〉 it holds that
l(e′) is applicable in l(e)[s] for a state s, v ∈ s.
Lemma 4.4. Let e be an edge e = 〈v, v′〉 ∈ E, where v, v′ ∈ V \ {vA}, and
its label is l(e) = 〈o1, . . . , on〉. Then it holds v′ ∈ l(e)[s] for every s ⊆ F such
that v ∈ s.

25



4. TSP-Reducible Problem ................................
Proof. Based on Definition 4.1, for every transition (s1, o, s2) ∈ TP , s1 6= s2,
it holds that pre(o) ⊆ FP . Therefore, s2 ⊆ o[s′1] for every s′1 ⊆ F such that
s1 ⊆ s′1.

Let e = 〈v, v′〉 be an edge in the encoding. The label of the edge l(e) =
〈o1, . . . , on〉 is the cheapest path from {v} to {v′} in the positional projection.
Therefore, it must hold v′ ∈ l(e)[s] for every s ⊆ F such that v ∈ s.

It is possible to see this property even in our example problem. For example,
the edge e = 〈IP , a〉 has a label l(e) = 〈oa〉. From the positional projection,
it is clearly visible that b ∈ oa[s] for every state s such that a ∈ s.

The second lemma concerns the Positional task as well. It shows that the
edge leading to a positional fact f ∈ Enabling-positionsΠ really enables the
transition between central states in an acyclic projection T (Π,Fi) such that
γ(T (Π,Fi)) = v. Obviously, if this property was not true, the whole idea
behind the TSP-reducible problem encoding would be incorrect.

This lemma will be used later on to prove that transformed solution into
the optimal plan made the transition between central states.
Lemma 4.5. Let v, v′ ∈ V \ {vA}, l(〈v, v′〉) = 〈o1, . . . , on〉 and γ(T (Π,Fi)) =
v′. Then for some states s, s′ ∈ Sgi , s 6= s′, there exists a transition (s, on, s

′) ∈
Tgi dependent on the positional mutex group.

Proof. From condition (v) of Definition 4.1, it follows that every transition
leading to a given state s ∈ SP has the same add effect. The label l(〈v, v′〉) are
the operators of the cheapest path in the positional projection between {v}
and {v′}. Let ({v′′}, o, {v′}) denote the last transition of this path. Obviously,
the operator o is dependent on the positional mutex group and v′ ∈ add(o).
Because the function γ from condition (vi) of Definition 4.1 is the injective
function and γ(T (Π,Fi)) = v′, this operator is dependent on Fi.

In contrast to the previous two lemmas, the next lemma is focused on the
Acyclic task. Every plan must be a path from the initial state to the goal
state in every acyclic projection. That is because every acyclic projection is a
projection to a set of facts that contains exactly one goal fact.

We have already outlined a part of the transformation from the solution
to the TSP encoding into the optimal path. The operators of transitions in
the positional projections are reconstructed from the labels of edges in the
solution to the encoding.

The second part of the transformation concerns the Acyclic task. We will
split the cheapest path from the initial state to the goal state in every acyclic
projection around the transition between central states.

The operators of transitions before will be placed in the plan before the tran-
sition between central states is enabled. This will ensure that the transition
between central states can be done.
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Ig1

s

Gg1

o0

oa

(a):

Ig1

s

Gg1

prefix(F1)

t1

(b):

Figure 4.3: (a) An example of a shortest path from Ig1 to Gg1 in the acyclic
projection T (Π,F1) from Figure 4.1.
(b) The splitting of the shortest path from the point (a).

The operators of transitions after will be placed in the plan after enabling
the transition between central states.

The resulting plan will be a path from the initial state to the goal state in
every acyclic projection.

In this lemma, it is shown that every cheapest path in an acyclic projection
can be split into these three parts. Additionally, it is shown that there is
exactly one way how the cheapest path can be split.
Lemma 4.6. Let T (Π,Fi) be an acyclic projection and π be the cheapest
path from Igi to Ggi such that π = 〈t1, . . . , tn〉. Then there exist prefix(Fi) =
〈t1, . . . , tk−1〉 and suffix(Fi) = 〈tk+1, . . . , tn〉 such that every t ∈ prefix(Fi)
and every t′ ∈ suffix(Fi) are transitions independent on the positional mutex
group, and tk is dependent on the positional mutex group. Additionally, this
splitting is unique.

Proof. From Definition 4.1, it holds that every path from Igi to Ggi contains
a transition between central states that is dependent on the positional mutex
group. This transition is tk. As the path π is the cheapest, it does not contain
any transition (s, o, s) ∈ Tgi . This transition would be redundant and would
only increase the cost of the path. Therefore, based on the definition of the
TSP-reducible problem, every other transition in π has to be independent.
Recall that the π is a path in an acyclic projection. Thus, it contains exactly
one transition dependent on positional mutex group, the transition tk. We can
split the path π around tk, so every t ∈ prefix(Fi) and every t′ ∈ suffix(Fi)
are transitions independent on the positional mutex group.

We denote the splitting of the cheapest path π from Igi to Ggi in T (Π,Fi)
as a triple 〈prefix(Fi), tk, suffix(Fi)〉. From now on, we will always be
interested only in the operators in the prefixes and suffixes.

An example of such splitting is shown in Figure 4.3. For the acyclic projec-
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tion T (Π,F1), the shortest path from Ig1 to Gg1 is depicted. This path can
be split according to Lemma 4.6. The splitting is a triple 〈prefix(F1), t1,
suffix(F1)〉 such that t1 = (s1, oa, s

′
1), and the preffix contains the indepen-

dent transition before t1. The suffix is empty in this case.

4.1.3 The Transformation of the TSP Solution into the
Optimal Plan

Now, we will focus on the transformation itself. We will start with the
transformation from the solution to TSP (Π) to an optimal plan in Π. From
now on, without loss of generality, let us assume that the solution p to
TSP (Π) is in the following form p = 〈IP , e1, v1, . . . en, vA, 〈vA, IP 〉, IP 〉. We
can consider the solution in this form because it is a cycle and the edge
〈vA, IP 〉 is in every solution (Lemma 4.3).

We have described how the transformation works in the previous subsection.
To summarize, the transformation itself is based on the splitting of the
cheapest paths in the acyclic projections. Every cheapest path in an acyclic
projection contains the transitions necessary to achieve a goal fact. Only
one of those transitions is dependent on the positional mutex group. This
transition is between central states.

First, we can apply all of the operators in prefixes. For every transition
between central states, it is necessary to find the path in the positional
projection such that this transition is enabled (Lemma 4.5). Once all of
these operators of transitions are applied, it is possible to apply operators in
suffixes. As all of the goal facts are in acyclic projections, the result of these
applications will be a goal state.
Definition 4.7. Given some solution p = 〈IP , e1, v1, . . . , en+1, vA, en+2, IP 〉
to TSP (Π), the transformation of the solution p is an operator sequence
plan(p) = seq(prefix(F1), . . . , prefix(Fn), l(e1), . . . , l(en),
suffix(F1), . . . , suffix(Fn)) such that 〈prefix(Fi), ti, suffix(Fi)〉 is a split-
ting of the cheapest path from Igi to Ggi for every T (Π,Fi) ∈ AcyclicΠ.
Theorem 4.8. Given a solution p to TSP (Π), then the operator sequence
plan(p) is an optimal plan in Π and the cost c(plan(p)) = c(p) − M +∑n

i=1 c(prefix(Fi)) +
∑n

i=1 c(suffix(Fi)).

Proof...1. Recall that every cheapest path from Igi to Ggi in the projection
T (Π,Fi) can be split into prefix(Fi), one transition dependent on FP ,
and suffix(Fi). The parts prefix(Fi) and suffix(Fi) contain only
independent transitions. In the plan π, we first apply all of the operators
of the prefixes as they are independent and, therefore, applicable to any
state s such that I ⊆ s.

Afterward, we need to apply all of the operators of transitions dependent
on the positional mutex group using the cheapest paths in the T (Π,FP ).

28



............................4.1. Problem Definition and Encoding

The cycle p starts in the initial state IP = I∩FP . Any of the prefixes did
not alter this state. Since every two consequent edges e, e′ in the cycle
are incident with each other, seq(l(e), l(e′)) is applicable in every state s
such that l(e) is applicable in s, as shown in Lemma 4.4. Additionally,
as proven in Lemma 4.5, given v ∈ V , v = γ(T (Π,Fi)), then every label
of an edge leading to v contains the operator of the transition between
central states in the acyclic projection T (Π,Fi).
The cycle p visits every vertex in Enabling-positionsΠ. Therefore, a
transition between central states of every acyclic projection is used.
As a result, seq(suffix(F1), . . . , suffix(Fn)) can be applied as every
suffix(Fi) contains only independent transitions.
It holds that FP ∩G = ∅ from the definition of the TSP-reducible problem.
As the suffix(Fi) is the last part of the cheapest path leading to Ggi

and is used for every acyclic projection, G ⊆ plan(p)[I]. The operator
sequence plan(p) is a well-formed plan...2. There is no cheaper plan in Π than plan(p) because the path from Igi to
Ggi in projection Fi is the cheapest, all of the labels l(e) are the operators
of the cheapest paths, and the total cost of the cycle p is minimized. The
operator sequence plan(p) is an optimal plan...3. Clearly, that c(seq(l(e1), . . . , l(en))) = c(p)−M , so the cost of the whole
plan c(plan(p)) = c(p)−M +

∑n
i=1 c(prefix(Fi)) +

∑n
i=1 c(suffix(Fi)).

For our example case, the solution to the encoding was shown in the
Figure 4.2. It is a cycle between vertices IP , a, b, vA, IP , in this order. The
only prefix is for the acyclic projection T (Π,F1) and contains 〈o0〉. All of the
suffixes are empty. The edges e = 〈IP , a〉 and e′ = 〈a, b〉 has labels l(e) = 〈oa〉
and l(e′) = 〈o1, ob〉. Therefore the transformed solution into the optimal plan
is an operator sequence 〈o0, oa, o1, ob〉.

We have established the transformation from a solution to a TSP-reducible
problem encoding into an optimal plan. Now, we will provide the transforma-
tion for the other way.

4.1.4 Properties of Plans

An informal description of the transformation from the optimal plan into a
solution to the TSP-reducible problem encoding is as follows.

Recall that the form of the optimal plan was created by the transformation
of the solution to the encoding. It was an operator sequence starting with
the prefixes. After these prefixes, there is the most important part. This
part consists of the operators of transitions in the positional projection. The
operator sequence ended with the suffixes.
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First, we will show that every optimal plan can be reordered into this exact

form. The transformation from the optimal plan into a solution to encoding
will split the part consisting of the operators of transitions in the positional
projection. This splitting will produce operator sequences. These will be the
operators of the cheapest path in the positional projection between states of
facts from Enabling-positionsΠ. These operator sequences will correspond
to edges in the encoding (both of them will be the cheapest paths between
the same states).

Last but not least, we will show that these edges are part of the solution
to the TSP-reducible problem.

In order to know that every optimal plan can be reordered, we need to
prove that it contains the cheapest path from the initial to the goal state in
every acyclic projection.
Lemma 4.9. Let π = 〈o1, . . . , on〉 be an optimal plan of Π and T (Π,Fi) ∈
AcyclicΠ. Then π contains operators ok1 , . . . , okm , in this order, for indexes
k1, . . . , km ∈ {1, . . . , n} such that 〈ok1 , . . . , okm〉 is the cheapest path from Igi

to Ggi in T (Π,Fi).

Proof. Based on Definition 4.1, for every T (Π,Fi) ∈ AcyclicΠ, Fi contains
exactly one goal fact g. Therefore, it holds that Ggi = {g}. Since π is a
plan, it has to contain an operator o such that g ∈ add(o). As T (Π,Fi) is an
acyclic projection, this state is reachable using the operators in the path of
transitions of Tgi from Igi to Ggi . The plan π is optimal, so this path has to
be the cheapest.

Recall that a prefix and a suffix of every cheapest path in T (Π,Fi) ∈
AcyclicΠ contains only independent transitions. Using the previous lemma,
from now on, we will assume that every optimal plan is in the following
ordering π = seq(prefix(F1), . . . , prefix(Fn), o1, . . . , om,
suffix(F1), . . . , suffix(Fn)).

Now, when it was shown that every optimal plan could be reordered. In the
next lemma, we will show that the part containing the operators of transitions
in the positional projection enables the transition between central states in
every acyclic projection. Recall that this property is necessary to find the
corresponding edges in the encoding to the splitting of this operator sequence.
Lemma 4.10. Let π = seq(prefix(F1), . . . , prefix(Fn), o1, . . . , om,
suffix(F1), . . . , suffix(Fn)) be an optimal plan for Π. Then the sequence
π′ = 〈o1, . . . , om〉 are the operators of the cheapest path in the positional
projection that visits every f ∈ Enabling-positionsΠ and π′[IP ].

Proof. The sequence π′ is applicable in IP because IP = I ∩ FP and every
prefix contains only independent transitions in the acyclic projections. As
we have shown in Lemma 4.9, an optimal plan contains the cheapest paths
from Igi to Ggi in every T (Π,Fi). Therefore, π′ must contain the transitions
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between all of the central states. From the definition of the TSP-reducible
problem, it holds that every transition between two states in positional
projection has preconditions only from the positional mutex group. Therefore,
π′ visits every state f ∈ Enabling-positionsΠ one by one. As π is optimal, the
cost of paths between every f, f ′ ∈ Enabling-positionsΠ is minimized.

As we outlined at the beginning of this subsection, the last thing that needs
to be proven is that we can find the operator sequences that are operators of
the cheapest paths in the positional projections between states containing
facts from Enabling-positionsΠ. These operator sequences would correspond
to edges in the encoding. Afterward, in the transformation, these edges (with
the addition of two edges incident with vA) will form the Hamiltonian cycle.

In the next lemma, we will show that such splitting exists. Each split is
an operator sequence. This operator sequence consists of operators of the
cheapest path between two enabling states. The cheapest path of every split
ends in the enabling state where the cheapest path of the next split starts.
Additionally, the cheapest path of the split can end only in the enabling state
that no cheapest path of any previous split has visited.

If this last condition was not enforced, we could obtain more splits than
is the number of enabling states. We, clearly, do not want this, as we want
to have only one edge leading to every enabling state. Otherwise, the edges
would not be part of the Hamiltonian cycle.
Lemma 4.11. Let π = seq(prefix(F1), . . . , prefix(Fn), o1, . . . , om,
suffix(F1), . . . , suffix(Fn)) be an optimal plan of Π with the encoding
TSP (Π) = 〈V,E〉. Then 〈o1, . . . , om〉 = seq(π1, . . . , πn) such that every πi =
〈oi

1, . . . , o
i
ki
〉 is an operator sequence, where |add(oi

ki
)∩Enabling-positionsΠ| =

1, and for every l < i, it holds (add(oi
ki

) ∩Enabling-positionsΠ) /∈ add(ol
kl

).
Additionally, the edge ei = 〈(pre(oi

1) ∩ Enabling-positionsΠ), (add(oi
ki

) ∩
Enabling-positionsΠ)〉 ∈ E has a cost c(ei) = c(πi).

Proof. According to Lemma 4.10, the path 〈o1, . . . , om〉 visits every fact
in Enabling-positionsΠ. Additionally, FP is a fam-group (Definition 4.1).
Therefore, there has to exist the specified splitting seq(π1, . . . , πn). The plan
π is optimal. Hence, the costs of the paths are the cheapest. As the costs of
the edges in the encoding are the costs of the cheapest paths between two
facts, c(ei) = c(πi) for every πi.

4.1.5 The Transformation of the Optimal Plan into the TSP

In the previous section, we have outlined how the transformation of the
optimal plan into the solution to the TSP-reducible problem encoding works.
To shortly summarize, the prefixes and suffixes of the plan are stripped
off. The remaining part is the cheapest path in the positional projection
(Lemma 4.10). This part can be further split into sections depicting transitions
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between states containing facts in Enabling-positionsΠ (Lemma 4.11). As
these sections are the cheapest paths between these states, they have the
same cost as edges in the TSP-reducible problem encoding. The transformed
path is a sequence of these edges, followed by the sequence leading back to
IP using the vertex vA.
Definition 4.12. Given an optimal plan π and its reordering π′ = seq(
prefix(F1), . . . , prefix(Fn), π1, . . . , πn, suffix(F1), . . . , suffix(Fn)), let us
define its transformation to a sequence of edges and vertices in TSP (Π) as
cycle(π) = 〈IP , e1, v1, . . . , en, vn, 〈vn, vA〉, vA, 〈vA, IP 〉, IP 〉, such that ei is an
edge between the beginning and end fact of πi.
Theorem 4.13. Let π be an optimal plan of Π with its reordering π′ = seq(
prefix(F1), . . . , prefix(Fn), π1, . . . , πn, suffix(F1), . . . , suffix(Fn)), and let
TSP (Π) = 〈V,E〉 be the TSP-reducible problem encoding of Π. Then its
transformation cycle(π) is a solution to TSP (Π) with cost c(cycle(π)) =
c(π) +M −

∑n
i=1 c(prefix(Fi))−

∑n
i=1 c(suffix(Fi)).

Proof. The sequence seq(π1, . . . , πn) is a splitting of 〈o1, . . . , om〉, as shown
in Lemma 4.11. Therefore, every two edges ei and ei+1 for i ∈ {1, . . . , n− 1}
are incident. The first edge e1 starts from the vertex IP as 〈o1, . . . , om〉 is
applicable to {IP } (Lemma 4.10). The sequence cycle(π) is, as a result, a
cycle in TSP (Π). Moreover, it visits every vertex in V (Lemma 4.10). As the
plan π is optimal, the total cost c(π) is minimal. As shown in Lemma 4.3,
every Hamiltonian cycle has to contain the edge 〈vA, IP 〉, and the cost of
every edge leading to vA is the same. Thus, cycle(π) is Hamiltonian and it is
minimal.

Recall that the cost of every edge between v, v′ ∈ Enabling-positionsΠ is
defined as c(〈v, v′〉) = c(l(〈v, v′〉)). The cost c(〈vA, IP 〉) = 0 and c(〈vn, vA〉) =
M . The transformation cost c(π) = c(seq(π1, . . . , πn)) + c(seq(prefix(F1),
suffix(F1))) + · · ·+ c(seq(prefix(Fn), suffix(Fn))). Because c(πi) = c(ei)
(Lemma 4.11), the cost c(cycle(π)) = M +

∑n
i=1 c(πi). As a result, the cost

c(cycle(π)) = c(π) +M −
∑n

i=1 c(prefix(Fi))−
∑n

i=1 c(suffix(Fi)).

4.1.6 Conclusion

We have shown that every TSP-reducible STRIPS problem can be solved as
the traveling salesman problem. We have established the relations between
the costs of the solution to the TSP and the optimal plan of the original
STRIPS problem. Moreover, every optimal plan of the STRIPS problem
can be transformed into a Hamiltonian cycle in its TSP-reducible problem
encoding.

The TSP-reducible problems form a set of STRIPS problems that are
easier to solve. As we stated in Chapter 3, the TSP is an NP-complete
problem (Karp, 1972). On the contrary, solving the STRIPS problem is
PSCPACE-complete (Bylander, 1994).
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4.2 Visit-All Is TSP-Reducible

In this section, we would like to provide an example of a TSP-reducible
STRIPS problem. We will prove that the Visit-All problem is a TSP-reducible
problem. The Visit-All problem was a part of the International planning
competition 2011 and 2014. It models an agent in a grid that has to visit all
of the specified positions.

Structurally, the problem contains two distinct subsets of facts. The first
one is a set of positional facts that represent positions in a grid. The second
one is a set of goal facts. These facts represent a position in the grid that was
visited. The Visit-All problem has only one type of operator. Every operator
describes a movement from one position to the other, and once it is applied,
the position is marked as visited. A formal definition follows.
Definition 4.14 (Visit-All problem). An instance of a STRIPS problem Π =
〈F ,O, I,G〉 is a Visit-All problem if all of the following conditions are satisfied:

. F = Fpos ∪ G, such that Fpos ∩ G = ∅.. There exists an injective function γ : G → Fpos.. I = {p}, where p ∈ Fpos.. For every operator o ∈ O, it holds that pre(o) = del(o) = {p1} ⊆ Fpos.
If there exist g ∈ G such that γ(g) = p2 ∈ Fpos, then add(o) = {p2, g}.
Otherwise, add(o) = {p2} ⊆ Fpos. The cost of every operator o ∈ O is
c(o) = 1.

In the Visit-All definition, Fpos denotes the positional facts, and G denotes
the goal facts. The function γ maps every goal fact to a specific positional
fact.

4.2.1 Properties of the Visit-All problem

With the problem defined, let us show that Visit-All is a TSP-reducible
problem. First of all, we need to inspect its structure, find mutex groups,
their projections, and their relations. As the first step of this process, we will
prove that Fpos is a fam-group and that every goal fact is a mutex group.
Recall that it is necessary to split all facts into pairwise disjoint mutex groups.
Otherwise, the problem would not be TSP-reducible.
Lemma 4.15 (Fpos is a fam-group). Let ΠV be a Visit-All problem Π =
〈Fpos ∪ G,O, I,G〉. Then its set of positional facts Fpos is a fam-group.

Proof. From the definition of the Visit-All problem, it holds that there exists
p ∈ Fpos, g ∈ G such that I = {p, g}. Thus, |Fpos ∩ I| = 1 and the first
condition of the fam-group is satisfied.
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4. TSP-Reducible Problem ................................
For every o ∈ O, there are two possible variants of add effects and the size

of the intersection is |Fpos ∩ add(o)| = 1 for both of them. The variant of the
delete effects and preconditions is only one. Hence, |Fpos ∩ pre(o) ∩ del(o)| =
|Fpos ∩ {p} ∩ {p}| = 1, for p ∈ Fpos, such that pre(o) = del(o) = p.

Therefore, it is true that |Fpos ∩ add(o)| = 1 ≤ |Fpos ∩ pre(o) ∩ del(o)| = 1
and the second condition of the fam-group is satisfied.

It is trivial that every set S = {f} of a single fact is a mutex group because
for every reachable state s it holds |s ∩ S| ≤ 1. As a result, every goal state
g ∈ G forms a mutex group {g}.

Now, we have the whole set of facts F = Fpos ∪ G split into pairwise
disjoint mutex groups. With the mutex groups specified, let us show how
their projections look like. Their attributes are apparent from the definition
of a projection (Definition 3.19).

The transition system T (Π,Fpos) = 〈SP ,O, TP , IP , GP 〉 is a projection to
Fpos with the abstraction function α : S → SP , such that α(s) = s ∩ Fpos.
For the transition system T (Π,Fpos), it holds:

. SP = {{f} | f ∈ Fpos} ∪ {∅}. IP = I ∩ Fpos.GP = SP. TP = {(α(s), o, α(s′)) | (s, o, s′) ∈ T}

A projection of the goal fact g ∈ G is a transition system T (Π, {g}) =
〈Sg,O, Tg, Ig, Gg〉, where:

. Sg = {∅, {g}}. Ig = I ∩ {g}.Gg = {{g}}. Tg = {(α(s), o, α(s′)) | (s, o, s′) ∈ T}

In order to show that the Visit-All problem is TSP-reducible, it is necessary
to determine which mutex group projections are acyclic. Every TSP-reducible
problem contains only one mutex group whose projection can contain cycles.
In the next lemma, we will show that a projection to every goal fact is acyclic.
Therefore, the only cyclic projection will be T (Π,Fpos).
Lemma 4.16 (Projection T (Π, g) is an acyclic transition system). Let Π =
〈Fpos∪G,O, I,G〉 be a Visit-All problem. Then for every g ∈ G, the projection
T (Π, {g}) is an acyclic transition system.

34



............................... 4.2. Visit-All Is TSP-Reducible

Proof. Recall that every operator o ∈ O has delete effect del(o) ⊆ Fpos

(Definition 4.14). Therefore, there is no transition ({g}, o, ∅) because there is
no operator such that g /∈ o[s] if g ∈ s.

Closely related to the goal fact projections is the following lemma. This
lemma states that every transition between two distinct states in the goal
fact projection is dependent on Fpos. This is one of the conditions needed to
be true for a TSP-reducible problem.
Lemma 4.17. Let Π be a Visit-All problem and let T (Π, g) be an acyclic
projection of some g ∈ G. Then every transition between states ∅ and {g} is
dependent on Fpos.

Proof. Based on Definition 4.14, if an operator o ∈ O contains g ∈ add(o),
then |add(o) ∩ Fpos| = 1. Therefore every transition that changes a state in
T (Π, g) is a transition dependent on Fpos.

4.2.2 Proof that Visit-All is TSP-Reducible

With all of the previous lemmas proven, we can finally prove that a Visit-
All problem is a TSP-reducible problem. The proof is split into several
parts according to the conditions in the TSP-reducible problem definition
(Definition 4.1).
Theorem 4.18. Every Visit-All problem Π is TSP-reducible.

Proof. Let Π be a Visit-All problem. We will show that every condition from
Definition 4.1 holds.

(i) The set of facts is defined as F = Fpos ∪ G. The set of positional facts
Fpos is a fam-group as shown in Lemma 4.15 and a set {g} is a mutex
group for every g ∈ G.

(ii) The projection T (Π, {g}) to a fact g ∈ G is acyclic (Lemma 4.16) and
all of these goal projections creates a set AcyclicΠ = {T (Π, g) | g ∈ G}.

(iii) Obviously, for every two acyclic projections T (Π, g) and T (Π, g′), it
holds {g} ∩ {g′} = ∅. For every T (Π, g), it holds |{g} ∩ G| = 1 and
{g} ∩ Fpos = ∅. From Definition 4.14, it holds Fpos ∩ G = ∅.

(iv) For every operator o ∈ O, it holds that pre(o) ⊆ Fpos. Therefore, even
for every transition t = (s, o, s′) in a projection T (Π,Fpos), it holds
pre(o) ⊆ Fpos.

(v) For every operator o ∈ O, it holds that if there exists g ∈ G such that
γ(g) = p2 ∈ Fpos, then add(o) = {p2, g}. Otherwise, add(o) = {p2} ⊆
Fpos. Therefore, every two operators o′, o′′ of transitions leading to the
same state have add(o′) = add(o′′).
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(vi) Provided we have an injective function γ in the Visit-All definition. We

can create a different injective function γ′ : AcyclicΠ → Fpos such that
γ′(T (Π, g)) = γ(g). As shown in Lemma 4.17, every acyclic projection has
exactly two states s, s′ and every transition between them is dependent
on Fpos. As s = Igi and s′ = Ggi , every path between them contains this
transition.

The Visit-All problem is an example of a TSP-reducible problem. Later
on, we will provide the run time comparison of TSP solver with the domain-
independent planner employing heuristic search. However, in the next chapter,
we will provide a more general definition of problems that can be solved using
TSP variants.
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Chapter 5

PC-GTSP-Reducible Problem

In this chapter, a different set of STRIPS problems is presented. This set is
called PC-GTSP-reducible problems and these problems can be solved as the
PC-GTSP.

In the first part, we will provide the PC-GTSP-reducible problem definition
and discuss its structure. Afterward, the encoding of the graph will be shown.
This encoding of the PC-GTPS-reducible problem creates an instance of
PC-GTSP, which is a graph. In the last part, we will prove that the solution
to this PC-GTSP instance can be transformed into an optimal plan in the
original STRIPS problem and vice versa.

5.1 Problem Definition

A PC-GTSP-reducible problem is a STRIPS problems with a specific structure.
The core of the structure is the same as TSP-reducible problems. There must
exist a splitting of facts of the problem into pairwise disjoint mutex groups.
With one exception, all of the projections to these mutex groups have to be
acyclic. Therefore, these mutex groups are called acyclic mutex groups and
projections to them are called acyclic projections. The remaining one mutex
group is called the positional mutex group, and the projection to it is called
the positional projection.

Just as in the TSP-reducible problem, the positional mutex group does
not contain any goal facts. On the contrary, every acyclic mutex group must
contain exactly one goal fact.

A transition between distinct states in the positional projection can be
independent on acyclic projections. The second possibility is that it may be
dependent on some acyclic mutex groups. The only condition is that the
operator of this transitions is a label of a transition between distinct states in
exactly one acyclic projection. In other words, every operator of a transition
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between distinct states in the positional projection is either independent on
acyclic projections or it is an operator of a transition between distinct states
in a single acyclic projection.

In the acyclic projection, every transition between distinct states can be
dependent on the positional mutex group or partially dependent on some
other acyclic mutex group. If one transition between two distinct states in the
acyclic projection is partially dependent on some other acyclic mutex group,
then all of the transitions between these two states has to be dependent on
this acyclic mutex group as well. Moreover, facts from this acyclic mutex
group in preconditions of operators of these transitions have to be the same.
If one of the transitions between two distinct states is dependent on the
positional mutex group, then every transition between these states must be
dependent on the positional mutex group. However, their operators can have
different facts from the positional mutex group in preconditions.

Lastly, every path from the initial state to the goal state in an acyclic
projection must visit every state in this projection. The whole structure is
formally specified in the following definition. The positional mutex group is
denoted as FP and the positional projection as T (Π,FP ). Additionally, the
acyclic mutex group will always be denoted as Fi with index i ∈ {1, . . . , k}
and the acyclic projection to this mutex group will be denoted as T (Π,Fi).
Definition 5.1 (PC-GTSP-reducible STRIPS problem). A STRIPS problem
Π = 〈F ,O, I,G〉 is called as PC-GTSP-reducible problem if all of the following
holds:

(i) There exists a set of mutex groups {FP ,F1, . . . ,Fk} such that Fi∩Fj = ∅
for every two Fi,Fj and F = FP ∪F1∪· · ·∪Fk. Additionally, the mutex
group FP is also a fam-group.

(ii) The projection T (Π,FP ) = 〈SP ,O, TP , IP , GP 〉 of a fam-group FP is
cyclic and the rest of the projections to mutex groups are acyclic and
form a set of acyclic projections AcyclicΠ = {T (Π,F1), . . . , T (Π,Fk)},
where each T (Π,Fi) = 〈Sgi ,O, Tgi , Igi , Ggi〉.

(iii) For every T (Π,Fi) ∈ AcyclicΠ, it holds that |Fi ∩ G| = |Ggi | = 1. For
the set of facts FP , it holds that FP ∩ G = ∅.

(iv) If the transition t = (s, o, s′) ∈ TP , s 6= s′ is partially dependent on
acyclic mutex group Fi, than there exists acyclic mutex group Fj such
that t is dependent on Fj but not partially.

(v) For every T (Π,Fi) ∈ AcyclicΠ and every pair of states s, s′ ∈ Sgi , s 6=
s′, every transitions t = (s, o, s′), t′ = (s, o′, s′) ∈ Tgi are dependent
on FP or partially dependent on some A′ ⊆ AcyclicΠ. It holds that
(pre(o)\FP ) = (pre(o′)\FP ). If t is dependent on FP then |pre(o)∩FP | =
|pre(o′) ∩ FP | = 1. Additionally, every path from Igi to Ggi visits every
state in Sgi .
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(a) : Projection T (Π, FP )
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{ox, oy, o2,1, o2,2}

(c) : Projection T (Π, F2)

Figure 5.1: An example of projections in PC-GTSP-reducible problem. If the
transition is dependent on FP , it is drawn thicker.

(vi) For every o ∈ O, the cost c(o) = 1.

An example of a PC-GTSP-reducible problem is in Figure 5.1. It contains
two acyclic projections T (Π,F1) and T (Π,F2). The projection T (Π,FP )
is the positional projection. The acyclic projection T (Π,F2) contains a
transition with the operator o3. For o3, it holds that pre(o3)∩ s 6= ∅ and it is
only applicable in the state p2 ∈ SP . For the operators o2,1 and o2,2, it holds
pre(o2,1) ∩Gg2 = pre(o2,2) ∩Gg2 6= ∅. The operators ox, oy are independent
on acyclic projections.

In the following text, we will use this problem as a running example.

5.2 Problem Augmentation

For the encoding of the PC-GTSP-reducible problem that we will propose, it
is necessary that every transition between distinct states in acyclic projections
is dependent on the positional mutex group. There exists a problem aug-
mentation, that can be used to transform every PC-GTSP-reducible problem
to a problem satisficing this property. The augmentation takes an operator
without the precondition and creates |FP | new operators that have exactly
one of the facts from the positional mutex group in their precondition.
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Figure 5.2: An example of augmentation of a minimal problem. The operator
o, independent on the cyclic projection, was replaced by o1 and o2 dependent on
the cyclic projection.

Theorem 5.2 (PC-GTSP-reducible problem augmentation). Let Π = 〈F ,O, I,G〉
be a PC-GTSP-reducible problem and let t = (s, o, s′) ∈ Ti be a transi-
tion in T (Π,Fi) ∈ AcyclicΠ that is not dependent on the positional mutex
group. Additionally, let O′ = {o′ | f ∈ FP , pre(o′) = pre(o) ∪ {f}, del(o′) =
del(o), add(o′) = add(o)}. Then, for every plan π in Π, we can swap o in π
with o′ ∈ O′ to obtain a plan π′ in Π′ = 〈F ,O′, I,G〉, whereO′ = (O\{o})∪O′.
This plan has cost c(π′) = c(π).

Proof. For every reachable state s in Π, it holds that s ∩ FP 6= ∅ as FP is a
fam-group. Therefore, the operator o is applied in the plan π in a state s′
such that s′ ∩ FP = {f}. This operator can be swapped with o′ ∈ O′ such
that pre(o′) = {f} ∪ pre(o). This operator o′ always exists and does not
alter the add-effects and delete-effects of o. This swap is made in one-for-one
fashion, so c(π) = c(π′).

We can do this augmentation for every operator of a transition that is not
dependent on the positional mutex group in every acyclic projection. Hence,
from now on, we will assume that every transition between two distinct
states in an acyclic projection is dependent on the positional mutex group.
Therefore, every operator in O is dependent on the positional mutex group.

In Figure 5.2, there is a minimal problem containing one operator in the
acyclic projection that is not dependent on the positional projection. The
augmented problem contains operators o1 and o2 instead of o. We assume,
that state s1 = {f1}, s2 = {f2}, and that f1 ∈ pre(o1) and f2 ∈ pre(o2).

5.3 Problem Structure

Remember that we want to show an encoding of the PC-GTSP-reducible
problem to a PC-GTSP instance, which is a graph. This encoding will have
transitions between distinct states in acyclic projections as vertices. We want
to be sure that these vertices appear in the solution in the correct order
according to their precedences and their order in the acyclic projections.
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t1,1

t1,2

t2,1

t2,2

t3C(Ig1 ,s) C(s,Gg1 )

C(Ig2 ,Gg2 )

Figure 5.3: Graph with vertices corresponding to transitions between distinct
states in acyclic projections from the Figure 5.1. All transitions that are in the
same blue rectangle has the same value of the cluster function. Every transition
has the same index as its operator in the label. The clusters are marked as CX ,
where X is the value of the cluster function.

We can clearly see in our example problem that, for example, no transition
with the operator o2,1 cannot appear before the transitions with the operator
o1,1 or o1,2.

To ensure this property, these transitions that are vertices will be split into
clusters. Two transitions will be in the same cluster if they are between the
same states. Recall that in the PC-GTSP, only one vertex from the same
cluster can be visited. Therefore, this splitting will ensure that only one
transition between two distinct states in the acyclic graph was selected.

5.3.1 Clustering of Transitions

The splitting of transitions into clusters will be done using the cluster function.
This function creates a pair of states between which the transition is defined.
Definition 5.3. Given T (Π) = 〈S,O, T, I,G〉, let a function cluster : T →
S × S be defined by cluster((s, o, s′)) = (s, s′).

In our example problem from Figure 5.1, the cluster function for transi-
tions between distinct states in acyclic projections has three different values:
cluster((Ig1 , o1,1, s)) = cluster((Ig1 , o1,2, s)) = (Ig1 , s), cluster((s, o2,1, Gg1)) =
cluster((s, o2,2, Gg1)) = (s,Gg1) and cluster((Ig2 , o3, Gg2)) = (Ig2 , Gg2).

Figure 5.3 contains a graph with vertices representing these transitions
between distinct states in acyclic projections from our example. Every
transition has the same index as its operator in the label. E.g. the transition
t1,1 = (Ig1 , o1,1, s) and t3 = (Ig2 , o3, Gg2). Two transitions are in the same
cluster if they are in the same rectangular area.

The states within every acyclic projection have a defined order in which
they can appear in the path from the initial to the goal state. Additionally,
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in the PC-GTSP-reducible problem, every path from the initial to the goal
state in every acyclic projection leads through every state of this projection.

If we combine these two conditions, we obtain the ordering of states in
every acyclic projection. In every path from the initial to the goal state, a
state is visited after visiting all states of a lower order. This is a property that
must be reflected even in the solution to the PC-GTSP-reducible problem
encoding. It is necessary to make sure that the transitions in this solution
are in the correct order.
Lemma 5.4. Let T (Π,Fi) = 〈Sgi ,O, Tgi , Igi , Ggi〉 be an acyclic projection.
Then there exists an ordering s1 < s2 < · · · < sm of states in Sgi =
{s1, . . . , sm} such that every path from Igi to Ggi visits a state sj before
every sk for j ∈ {1, . . . ,m− 1}, k > j.

Proof. Recall that every path from Igi to Ggi visits the same states in Sgi .
Given that the projection is acyclic, there are no states s, s′ for which there
exists a path from s to s′ and a path from s′ to s at the same time.

In our example problem, the orderings are Ig1 < s < Gg1 in the acyclic
projection T (Π,F1), and Ig2 < Gg2 in T (Π,F2). It can be clearly seen that
there exists no path in the acyclic projections that would break this order.

Using this ordering, we can define the precedence conditions between
clusters in the encoding. A cluster of transitions starting in the state s must
be after a cluster of transitions that start in the state s′ such that s′ < s.

This way, it is possible to create an ordering of clusters of transitions
within a single acyclic projection. Recall that the transitions in the acyclic
projections can also be partially dependent on some other acyclic mutex
group.

In case of our example problem, the transition t3 cannot be made before
t1,1 or t1,2 because of the precondition on the fact from the state s.

However, the precedence conditions between clusters from different acyclic
projections can be made using the state ordering as well. Recall that the
acyclic projections are projections to mutex groups. Therefore, every reachable
state contains at most one fact. Assume that a transition is partially dependent
on an acyclic mutex group and its operator has a fact f from this acyclic
mutex group in its precondition. Then the cluster of this transition must be
after every cluster of transitions starting in the state s such that s < {f}.

In Figure 5.4, there is a clustering with precedence conditions for our
example problem. The clustering contains clusters C(Ig1 ,s), C(s,Gg1 ) and
C(Ig2 ,Gg2 ).

The cluster C(Ig1 ,s) must be before C(s,Gg1 ) because Ig1 < s. Additionally,
C(Ig1 ,s) must be before C(Ig2 ,Gg2 ) because pre(o3)∩s 6= ∅. The cluster C(Ig2 ,Gg2 )
must be before C(s,Gg1 ) because pre(o2,1) ∩Gg2 = pre(o2,2) ∩Gg2 6= ∅.
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t1,1

t1,2

t2,1

t2,2

t3C(Ig1 ,s) C(s,Gg1 )

C(Ig2 ,Gg2 )

Figure 5.4: Graph containing the clustering from Figure 5.3 with precedence
conditions. If an edge leads from cluster Ci to Cj then Ci must be visited before
Cj .

5.3.2 Start and End Positions of Transitions

The last thing that needs to be discussed is how the edges in the encoding
will be defined. Recall that every transition in every acyclic projection is
dependent on the positional mutex group. In order to create an optimal plan
for the PC-GTSP-reducible problem, we need to know in which order the
operators of transitions in vertices must be with respect to the positional
projection.

From the definition of the projection, it holds the following. Let o be an
operator dependent on a mutex group F ′ and let T (Π,F ′) = 〈S′, L, T ′, I ′, G′〉
be a projection to it. Then there exists a transition t ∈ T ′ such that
t = (s, o, s′), where s = pre(o) ∩F ′ and s′ = ((pre(o) \ del(o)) ∪ add(o)) ∩F ′.

Following this property, we will introduce a definition for the start and end
position of a transition in the acyclic projection.
Definition 5.5 (Start and end position). Given T (Π,Fi) ∈ AcyclicΠ and the
positional projection T (Π,FP ) with the set of states SP , then the start
position function γB : T → SP is defined as γB((s, o, s′)) = pre(o) ∩ FP . The
end position function γE : T → SP is defined as γE((s, o, s′)) = ((pre(o) \
del(o)) ∪ add(o)) ∩ FP .

The result of γB(t) represents the state in T (Π,FP ) that is in the precon-
dition of the transition. The second function γE defines the state in T (Π,FP )
that is the result of the operator application. Recall that every operator is
dependent on the positional projection and has exactly one fact from the
positional projection in the precondition.

We will show some of the start and end positions in our example problem
from Figure 5.1. The transition t = (Ig2 , o3, Gg2) has pre(o3)∩FP = {p2} and
add(o3)∩FP = del(o3)∩FP = ∅. Therefore, γ(t)B = {p2} and γ(t)E = {p2}.
The transition t′ = (Ig1 , o1,1, s) has pre(o1,1) ∩ FP = del(o1,1) ∩ FP = {IP }
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and add(o1,1) ∩ FP = {p1}. As a result, γ(t′)B = {IP } and γ(t′)E = {p1}.

5.4 Problem Encoding

For the definition of the PC-GTSP problem encoding, we need to define
two more objects. The first definition introduces the set of transitions
between distinct states in every acyclic projection. As we have outlined, these
transitions will be vertices in the encoding.
Definition 5.6. Given T (Π,Fi) ∈ AcyclicΠ, thenDistinct-transitions(Fi) =
{t | t = (s, o, s′) ∈ Tgi , s 6= s′}.

In our example problem, Distinct-transitions(F1) = {t1,1, t1,2, t2,1, t2,2}
and Distinct-transitions(F2) = {t3}. It is no surprise that these sets corre-
spond to transitions that were already used for describing the clustering.

The second definition defines a special type of the cheapest path in the
positional projection. This path contains only transitions in the positional
projection that are independent on the acyclic projections. It will be called
the independent cheapest path (ICP). The labels of edges in the problem
encoding will be found using the ICP.

The reason why the ICP is used is that the transitions dependent on the
acyclic mutex groups will be represented separately as vertices. If the path
was not limited only to the transitions independent on the acyclic projections,
the transitions dependent on the acyclic mutex groups might be included
multiple times.
Definition 5.7. Given a positional projection of a PC-GTSP-reducible prob-
lem, and the cheapest path p in the positional projection between states s, s′.
Then p is an independent cheapest path ICP (s, s′) if it does not contain any
transition dependent on an acyclic mutex group.

Figure 5.5 shows the only two ICPs with non-zero costs found in the
example problem.

Right now, we can define the PC-GTSP-reducible problem encoding. The
encoding takes transitions between distinct states in acyclic projections as
vertices and creates a complete graph. A label of an edge between two vertices
v, v′ is defined as a sequence of operators between the end state of v and the
start state of v′ in the cyclic projection. The cost of this edge is equal to the
number of operators in the label.

Recall that every vertex is a transition in an acyclic projection. Two
transitions are in the same cluster if they are transitions leading between
the same states. Remember, that states in every acyclic transition have an
ordering (Lemma 5.4). A precedence constraint exists between two clusters
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IP

p1 p2

p3

〈(p1, ox, IP )〉 〈(p2, oy, IP )〉

Figure 5.5: An example of the independent cheapest path in the positional
projection between states. There exists two ICPs with non-zero costs. One
between p1 and IP and one between p2 and IP .

Ci, Cj if they contain transitions from the same acyclic projection or the
operators of transitions from one cluster are partially dependent on an acyclic
mutex group whose projection contains transitions in the other cluster. A
cluster of transitions starting in the state smust be after a cluster of transitions
that starts in the state s′ such that s′ < s.

In the following text, we will denote a cluster Ci ∈ C as C(s,s′) if cluster(v) =
(s, s′) for every v ∈ Ci. Its set of precedence constraints is denoted as PC(s,s′)
correspondingly.

The formal definition of the PC-GTSP-reducible problem encoding is as
follows.
Definition 5.8 (PC-GTSP-reducible problem encoding). Given the PC-GTSP-
reducible problem Π = 〈F ,O, I,G〉. The PC-GTSP encoding PCGTSP (Π)
is defined by a graph PCGTSP (Π) = 〈V,E〉 with a cost function c : E → R,
a labeling function l, a vertex clustering C and sets of cluster precedence
conditions PCi where:

(i) V =
⋃

T (Π,Fi)∈AcyclicΠ

Distinct-transitions(Fi) ∪ {IP , vA}

(ii) E = {〈p, p′〉 | p, p′ ∈ V, p 6= p′}

(iii) For every e = 〈v, v′〉 for v, v′ ∈ V \ {vA, IP }, the label are the operators
of ICP (γE(v), γB(v′)) and c(e) = c(l(e)). If no such path exists, let
c(e) =∞.
Let e = 〈IP , v〉 and e′ = 〈v, IP 〉 for v ∈ V \ {vA, IP } then l(e) and l(e′)
are the operators of ICP (IP , γB(v)) and ICP (γE(v), IP ), respectively.
Costs c(e) = c(l(e)) and c(e′) = c(l(e′)). Additionally, every edge e′′
incident with vA has cost c(e′′) = 0.

(iv) Clustering of the vertices is a set C = {C1, . . . , Cm}∪{{vA}, {IP }}, where
Ci 6= ∅ for every Ci ∈ C, and C(s,s′) = {v|v ∈ V \ {vA, IP }, cluster(v) =
(s, s′)}
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(v) Given an acyclic projection T (Π,Fi) = 〈Sgi ,O, Tgi , Igi , Ggi〉 and states

s, s′ ∈ Sgi . Then PC(s,s′) = {{IP }}
⋃

(s,o,s′)∈V \{IP ,vA}
({Ccluster((s2,o2,s′

2)) |

T (Π, Fj) ∈ AcyclicΠ, pre(o) ∩ Fj = {f}, (s2, o2, s
′
2) ∈

Distinct-transitions(Fj), s2 < {f}} ∪ {Ccluster((s3,o3,s′
3)) | (s3, o3, s

′
3) ∈

V \ {IP , vA}, pre(o3) ∩ Fi = {f ′}, {f ′} ≤ s}). Additionally, PC{vA} =
{Ci | Ci ∈ C \ {{vA}}}.

A solution to the encoding PCGTSP (Π) is the solution to the PC-GTSP
in the graph PCGTSP (Π), such that no edge e in the solution has the cost
c(e) =∞.

Just like in the TSP-reducible problem encoding, the PC-GTSP-reducible
problem encoding contains vertices IP and vA. The vertex IP is a vertex
where the solution starts. The vertex vA is the last vertex of the solution.
The costs of edges incident with vA are different than in the TSP-reducible
problem encoding. The reason is that the position of vertices IP and vA in
the solution to the PC-GTSP-reducible problem encoding is fixed using the
precedence constrains. We will prove this claim in the next section.

As we have stated, all of the vertices except IP and vA are transitions.
Therefore we will mostly refer to them as transitions. Additionally, from now
on, we may call the PC-GTSP-reducible problem encoding simply as the
encoding. In case that we will need to refer to the TSP-reducible problem
encoding, we will use the full name.

In Figure 5.6, there is a visualisation of the example problem encoding.
The transitions are labeled according to which operator they contain. In
the encoding there are five clusters. The cluster C(Ig1 ,s) contains transitions
t1,1 and t1,2 as cluster(t1,1) = cluster(t1,2) = (Ig1 , s). The cluster C(s,Gg1 )
contains transitions t2,1 and t2,2 as cluster(t2,1) = cluster(t2,2) = (s,Gg1).

The cluster C(Ig1 ,s) ∈ PC(s,Gg1 ) because Ig1 < s. Moreover, C(Ig1 ,s) ∈
PC(Ig2 ,Gg2 ) because pre(o3) ∩ s 6= ∅. The cluster C(Ig2 ,Gg2 ) ∈ PC(s,Gg1 )
because pre(o2,1) ∩Gg2 = pre(o2,2) ∩Gg2 6= ∅.

5.5 Every Solution to the Encoding is an Optimal
Plan

With the encoding defined, in this section, it will be shown that every solution
to PCGTSP (Π) can be transformed into an optimal plan in Π. As we have
outlined in previous sections, the transformation of the solution will be a
concatenation of operators in labels of edges, and operators of transitions in
vertices.
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IP

t1,1

t1,2

t2,1

t2,2

t3 vA

0; 〈〉

0; 〈〉

1; 〈ox〉

0; 〈〉

0; 〈〉
1; 〈oy〉

1; 〈oy〉
1; 〈oy〉 0

0

0

0

0

0

(a) : Vertices and edges of the encoding.

IP

t1,1

t1,2

t2,1

t2,2

t3 vAC(Ig1 ,s) C(s,Gg1 )

C(Ig2 ,Gg2 ) {vA}{IP }

(b) : Clusters in the encoding and their precedence contraints.

Figure 5.6: Encoding PCGTSP (Π) of the example problem shown in Figure 5.1.
In Figure 5.6a, only edges with costs other than infinite, and edges between
distinct clusters are shown. Most of the edges e in the figure are marked with
two items in the format X;Y , where X is the cost c(e) and Y is the label l(e).
The rest of the edges are incident with vA and are marked only with their cost.
In Figure 5.6b, an edge leads from a cluster Ci to a cluster Cj if Cj ∈ PCi. The
solution to this problem encoding is colored blue.
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In the transformation into the plan, the operators from labels will make

transitions only in the positional projection. The operators of transitions in
vertices will make transitions in the acyclic projections and possibly even in
the positional projection.

The labels of edges contain operators that are dependent only on the
positional mutex group. The operators of transitions in vertices are always
dependent both on acyclic mutex groups and the positional mutex group.

We have already discussed that the reason why the PC-GTSP-reducible
encoding contains vertices IP and vA is similar to the TSP-reducible problem
encoding. These vertices ensure that every solution will start and end in
them. In the first lemma, we will show that every solution to the PC-GTSP
encoding must start with the vertex IP and end with the vertex vA.
Lemma 5.9. Let p be a solution to PCGTSP (Π). Then p = 〈IP , e1, v1, . . . ,
en, vA〉, i.e., p starts with IP and ends with vA.

Proof. This lemma follows directly from Definition 5.8. For every cluster
Ci ∈ C \ {{va}}, it holds that Ci ∈ PC{vA}. Additionally, for every cluster
Cj ∈ C \ {{IP }}, it holds {IP } ∈ PCj . Therefore, p has to start with IP and
end in vA. Otherwise, p would break precedence conditions and would not be
a solution to PCGTSP (Π).

Now, let us show that the label of an edge between two consequent transi-
tions v, v′ in the solution to the encoding is applicable to the end position of
the transition v and the result of this application contains the start position
of the transition v′. This lemma is important to show that the labels of edges
and operators of transitions create a valid operator sequence. Recall that
every plan must be a path in all projections to its facts. If this lemma were
not true, then the concatenation of operators of transitions dependent on
acyclic projections and labels of edges would not be operators of a path in
the positional projection.
Lemma 5.10. Let p = 〈IP , e1, v1, . . . , em, vA〉 be a solution to PCGTSP (Π).
Then, for every ei, i ∈ {2, . . . ,m− 1}, it holds γB(vi) ⊆ l(ei)[γE(vi−1)], and
γB(v1) ⊆ l(e1)[IP ].

Proof. According to Definition 5.8, every label of an edge e = 〈v, v′〉 between
v, v′ ∈ V \ {vA, IP } is ICP (γE(v), γB(v′)). Therefore, every operator in l(e)
is independent on acyclic projections and is applicable to its state of origin
γE(v). It holds γB(vi) ⊆ l(ei)[γE(vi−1)].

If the edge e starts in IP , the label is l(e) = ICP (IP , γB(v′)). The previous
statements hold even for this case, so γB(v′) ⊆ l(e)[IP ].

In the next lemma, we will show that every two transitions in the cheapest
path from the initial state to the goal state in an acyclic projection are from
different clusters. Recall that every solution to PC-GTSP has to visit exactly
one state from every cluster. If multiple transitions on this cheapest path
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were from the same cluster, the transformation from the solution would not
contain every operator of this path.
Lemma 5.11. Let T (Π,Fi) ∈ AcyclicΠ and let πi = 〈t1, . . . , tk〉 be the
cheapest path from Igi to Ggi in T (Π,Fi). Then cluster(t) 6= cluster(t′) for
every two transitions t, t′, t 6= t′, in πi.

Proof. Recall that every path from the initial to the goal state in the acyclic
projection must visit every state. If πi is the cheapest path, then it minimizes
its cost. Therefore, it contains no transition (s, o, s) ∈ Tgi that does not
change the state. Additionally, the projection is acyclic, so πi visits every
state exactly once. As a result, cluster(t) 6= cluster(t′) for every t, t′, t 6= t′

in πi.

In the follow-up lemma, it is shown that every solution to PCGTSP (Π)
must contain transitions that create the cheapest path between the initial and
the goal state for every acyclic projection. Recall that every acyclic mutex
group contains exactly one goal fact and the positional mutex group does
not contain any. This lemma is important for showing that the transformed
solution into the plan ends in the goal state.
Lemma 5.12. Let p = 〈IP , e1, v1, . . . , em, vA〉 be a solution to PCGTSP (Π)
and T (Π,Fi) ∈ AcyclicΠ. Then transitions vk1 , . . . , vkl

∈ Tgi in p create the
cheapest path 〈vk1 , . . . , vkl

〉 from Igi to Ggi in T (Π,Fi) and k1 < k2 < · · · < kl.

Proof...1. Every solution to PCGTSP (Π) has to visit every cluster of the
problem. Recall that it holds Distinct-transitions(Fi) ⊂ V for the
encoding. Additionally, every two transitions in the cheapest path from
Igi to Ggi are in different clusters (Lemma 5.11). As a result, every
solution to PCGTSP (Π) has to contain transitions vk1 , . . . , vkl

∈ Tgi

such that 〈vk1 , . . . , vkl
〉 is the cheapest path from Igi to Ggi in T (Π,Fi).

Otherwise, some of the clusters would not be visited...2. By contradiction. Suppose that p contains vk1 , . . . , vkl
∈ Tgi such that

πi = 〈vk1 , . . . , vkl
〉 is a cheapest path, and vkr ∈ πi appears in p before

vkq ∈ πi for kq < kr. As shown in Lemma 5.4, there exists an ordering of
states such that every path in T (Π,Fi) visits these states in this exact
order. The precedence conditions are created using this ordering. If vkr

appears in the path p before vkq , then kr < kq. Otherwise, the precedence
conditions would not be met. But this a contradiction because kq < kr.

In our example problem, the solution is p = 〈IP , 〈IP , t1,2〉, t1,2, 〈t1,2, t3〉, t3,
〈t3, t2,1〉, t2,1, 〈t2,1, vA〉, vA〉. The transtitions t1,2 and t2,1 are transitions in the
cheapest path 〈t1,2, t2,1〉 in the acyclic projection T (Π,F1) and they appear
in the correct order. The transition t3 is a transition in the cheapest path
〈t3〉 in the acyclic projection T (Π,F2).
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In the problem structure discussion, we have described that the precedence

conditions of clusters are defined based on the preconditions of operators in
transitions. We will now prove that these precedences are really correctly
formed and correspond to the ordering of operators of transitions in the
optimal plan.

The next lemma shows that if a transition t has precondition on some state
in a different acyclic projection, then it will appear in the solution right when
the state containing it is reached. In other words, transitions leading to this
state are before t in the solution and transitions leading from this state are
after t.
Lemma 5.13. Let p be a solution to PCGTSP (Π) and let t = (s0, o0, s

′
0) ∈

Tgi be a transition in acyclic projection T (Π,Fi). Let f be a fact from acyclic
mutex group Fj such that f ∈ pre(o). Let t be in the solution p. Then a
transition t′ reaching the state {f} is in p before t and a transition t′′ leading
from the state {f} is after t in the solution p.

Proof...1. By contradiction. Suppose that p is a solution and t′ = (s′, o′, {f})
is visited after t. For the operator of the transition t it holds f ∈ pre(o).
For the state s′ must hold s′ < {f} (Lemma 5.4). Therefore, cluster(t′) ∈
PCcluster(t), but this is a contradiction because we assumed that t′ is
visited after t...2. By contradiction. Suppose that p is a solution and t′′ = ({f}, o′′, s′′)
is visited before t. Obviously, {f} ≤ {f} (Lemma 5.4). Therefore,
cluster(t) ∈ PCcluster(t′′) (Definition 5.8), but this is a contradiction, as
we assumed that t′′ is visited before t.

The clustering of the transitions in the example problem encoding was
already shown in Figure 5.4. Just to recheck the correct order of transitions
in the solution p = 〈IP , 〈IP , t1,2〉, t1,2, 〈t1,2, t3〉, t3, 〈t3, t2,1〉, t2,1, 〈t2,1, vA〉, vA〉.
The transition t3 must be visited after t1,2 = (Ig1 , o1,2, s) because pre(o3) ∩
s 6= ∅. The transition t2,1 must be visited after t3 = (Ig2 , o3, Gg2) because
pre(o2,1) ∩Gg2 6= ∅. All of these conditions are satisfied even in the solution
p.

Right now, it is possible to define the transformation we have informally
described at the beginning of this section. Right after the definition, we will
prove that the transformed solution is an optimal plan.
Definition 5.14. Given a solution p = 〈IP , e1, v1, . . . , em+1, vA〉 to the en-
coding PCGTSP (Π), then the operator sequence corresponding to p is
plan(p) = seq(l(e1), o1, l(e2), o2, . . . , om) such that vi is labeled by the opera-
tor oi for i ∈ {1, . . . ,m}.
Theorem 5.15. Let p = 〈IP , e1, v1, . . . , em+1, vA〉 be a solution to Π. Then
plan(p) is an optimal plan in Π with the cost c(plan(p)) = c(p) +m, where
m is the number of vertices v ∈ V \ {IP , vA} in p.
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Figure 5.7: A solution to the PC-GTSP-reducible problem encoding from Fig-
ure 5.6. The edges with infinite costs and edges within clusters were intentionally
left out.

Proof...1. As shown in Lemma 5.10, every label of an edge e = 〈v, v′〉 is
applicable to the result of the end state of its origin transition v such
that the precondition in FP of the end transition v′ is satisfied. Hence,
the label l(e1) is applicable to I. Moreover, the whole sequence plan(p)
is a path in T (Π,FP )...2. As we have shown in Lemma 5.12, every solution to PCGTSP (Π)
contains transitions in the cheapest path from Igi to Ggi in every acyclic
projection T (Π,Fi). These transitions appear in the correct order, so its
ordering remains unchanged. Moreover, as proven in Lemma 5.13, they
appear in the correct order relative to its preconditions from different
acyclic projections. As a result, the whole sequence plan(p) is applicable
to I...3. Recall that G ∩ FP = ∅ and |G ∩ Fi| = 1 for every acyclic projection
T (Π,Fi). Every solution to PCGTSP (Π) contains transitions in the
cheapest path from Igi to Ggi in every acyclic projection. As a result, it
holds G ⊆ plan(p)[I]...4. The cost of every edge is minimal, as it is the cheapest path in FP .
Additionally, the total length of the solution p is minimal. The cost of
every edge between v, v′ ∈ V \ {vA} is defined as c(e) = c(l(e)). Every
edge leading to vA from v ∈ V \ {vA} has a cost c(e) = 0. Therefore,
c(plan(p)) = c(e1), . . . , c(em−1) + c(o1), . . . , c(om−1) = c(p) +m.

The solution to our example from Figure 5.6 is shown in Figure 5.7 and is
a path p = 〈IP , 〈IP , t1,2〉, t1,2, 〈t1,2, t3〉, t3, 〈t3, t2,1〉, t2,1, 〈t2,1, vA〉, vA〉. The la-
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bels are l(〈IP , t1,2〉) = {}, l(〈t1,2, t3〉) = {} and l(〈t3, t2,1〉) = {oy}. Therefore,
plan(p) = 〈o1,2, o3, oy, o2,1〉.

5.6 Every Optimal Plan Is a Solution to the
Encoding

With the transformation of the solution in an optimal plan established, let
us head into the opposite direction. In this section, we will present the
transformation from an optimal plan to a solution to the problem encoding.

In the first lemma, it is shown that every plan must contain the cheapest
path from the initial to the goal state in every acyclic projection. This lemma
holds true because every acyclic projection contains a goal fact. This goal
fact is in the goal state of the projection. This lemma is necessary for the
proof of the plan transformation. Recall that the solution to the problem
encoding has transitions in clusters defined as pairs of their incident states.
If these cheapest paths were not in the plan, some of the clusters would never
be visited.
Lemma 5.16. Let π be an optimal plan of the problem Π and T (Π,Fi) =
〈Sgi ,O, Tgi , Igi , Ggi〉 be an acyclic projection. Then π contains the operators
of the cheapest path from Igi to Ggi .

Proof. Recall that Ggi ⊆ G. Therefore, there has to exist an operator o in
every plan of Π such that Ggi ⊆ add(o). The state Ggi is a state in the acyclic
projection T (Π,Fi) with the initial state Igi . Obviously, a path from Igi to
Ggi must be in every plan of Π in order to reach the goal fact in Ggi . As π is
the optimal plan, the path must be the cheapest.

The plan to the example problem is π = 〈o1,2, o3, oy, o2,1〉. The plan
contains the operators o1,2 and o2,1 of the cheapest path 〈t1,2, t2,1〉 in the
acyclic projection T (Π,F1). Additionally, the plan contains o3 and this is
the operator of the cheapest path 〈t3〉 in the acyclic projection T (Π,F2).

With this property settled, it is possible to move to more complex lemmas
about optimal path structure. The following lemma shows that there are two
operators o, o′ whose transition is dependent on some acyclic projection. Then
if operators between them have transitions independent on acyclic projections,
they are the cheapest path in the projection T (Π,FP ). Moreover, this path
is from the state that is a part of the result of the operator o application to
the state that is a part of the precondition of o′.

This lemma will be used for showing that these paths are equal to the
edges in the encoding. They have the same cost and lead between the same
states. Recall, that the result of the operator application and the operator
precondition is the same as γE and γB functions from Definition 5.5.
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Lemma 5.17. Let π = 〈o1, . . . , oj , oj+1, . . . , ok−1, ok, . . . , om〉 be an optimal
plan of Π. Let π′ = 〈oj+1, . . . , ok−1〉 be a sequence of operators dependent
only on FP and let operators oj , ok be dependent on the positional mutex
group and an acyclic mutex group. Then π′ are the operators of the ICP in the
positional projection between the state s = ((pre(oj)\del(oj))∪add(oj))∩FP

and the state s′ = pre(ok) ∩ FP .

Proof. From the definition of STRIPS operators, the resulting state of ap-
plying o in state s is o[s] = ((s \ del(o)) ∪ add(o)) and the operator is
applicable in s if pre(o) ⊆ s. Recall that every operator in PC-GTSP-
reducible problem is dependent on the positional mutex group. Since it is
mutex group, for every operator o in π, the state in positional projection of
application in the initial state of all the operators from π up to o is defined by
((pre(o) \ del(o)) ∪ add(o)) ∩ FP . The start state of the consequent operator
o′ is pre(o′) ∩ FP . Since the plan π is optimal, the cost of the transitions
between these operators must be minimal.

In the plan π = 〈o1,2, o3, oy, o2,1〉 to the example problem, exists only one
non-empty sequence of operators dependent only on the positional mutex
group. That is 〈oy〉 and the operator oy is a label of the transition between
states p2 and IP . In the plan, it appears between operators o3 and o2,1. It
holds ((pre(o3) \ del(o3)) ∪ add(o3)) ∩ FP = p2 and pre(o2,1) ∩ FP = IP .

Now, the plan splitting will be derived. The following lemma proves that
every optimal plan can be split using the operators dependent on acyclic
projections. The rest of the operators are the cheapest paths in the positional
projection from the previous lemma. Notice, that this splitting copies the
form of edges (the cheapest paths) and vertices (operators dependent on
acyclic projections). Moreover, the similarity is even bigger as these edges
and vertices in the plan periodically alternates.
Lemma 5.18 (Plan splitting). Let π be an optimal plan in Π. Then π can be
split such that π = seq(π1, o1, π2, o2, . . . , om), where o1, . . . , om are operators
dependent on FP and some Fi such that T (Π,Fi), and πi is a (possibly
empty) sequence of operators dependent only on FP .

Proof. Every operator in the PC-GTSP-reducible problem is dependent on
FP . Hence, every operator in the plan π is in one of those categories. As the
operator sequences πi can be even empty, then the sequence must exist.

In the example problem plan π = 〈o1,2, o3, oy, o2,1〉, the splitting is π =
seq(〈〉, o1,2, 〈〉, o3, 〈oy〉, o2,1).

In the next definition, the transformation of an optimal plan to a sequence
of edges and vertices is given. Right after the definition, it is shown that this
transformation is a solution to the problem encoding.

The transformation is closely related to the previous lemma. It utilizes the
similarity between plan splitting and paths in the graph that was already
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informally outlined.
Definition 5.19. Given an optimal plan π = seq(π1, o1, π2, o2, . . . , om) in Π,
we denote the sequence of edges and vertices in PCGTSP (Π) as path(π) =
〈IP , e1, v1, . . . , vm, 〈vm, vA〉, vA〉, where vi is the transition between distinct
states labeled by oi in an acyclic projection, and ei = 〈vi−1, vi〉.
Theorem 5.20. Let π = seq(π1, o1, π2, o2, . . . , om) be an optimal plan in Π.
Then path(π) is a solution to PCGTSP (Π) with a cost c(path(π)) = c(π)−m.

Proof...1. Recall that every transition that is dependent on an acyclic
projection is a transition between distinct states in exactly one acyclic
projection. Therefore the selection of vi ∈ path(π) is unique...2. Every edge ei is incident with the vertices and c(ei) = c(πi) as every πi

is the cheapest path between γE(vi−1) and γB(vi) (Lemma 5.17)...3. The plan(π) starts in IP and ends in vA. Moreover, π contains the
cheapest path from Igi to Ggi in every acyclic projection (Lemma 5.16).
Therefore, a transition from every cluster Ci ∈ C is visited...4. Clearly, the precedence constraints of clusters {vA} and {IP } are satisfied.
Every other cluster Ci has all its precedence constraints satisfied as well
because the order of operators in path(π) respects the ordering defined
in Lemma 5.4...5. There are no transitions v, v′ ∈ path(π) such that cluster(v) = cluster(v′)
because the projections T (Π,Fi) are acyclic (Lemma 5.4)...6. The paths in acyclic projections are the cheapest (Lemma 5.16) and
paths in T (Π,FP ) are also the cheapest (Lemma 5.17). The total cost
of π is minimal and so is the cost of path(π)...7. For the cost of every πi, it holds that c(πi) = c(ei), as shown in
Lemma 5.17, every πi is the independent cheapest path in FP . The
cost of the plan is given as a sum of costs of every πi and costs
of the operators dependent on some acyclic projection. Therefore,
c(path(π)) =

∑m
i=1 c(ei) =

∑m
i=1 c(πi) and c(π) = m+

∑m
i=1 c(πi). As a

result, c(path(π)) = c(π)−m.

The optimal plan of our example problem from Figure 5.1 is π = 〈o1,2, o3, oy,
o2,1〉. The splitting of this plan is π = 〈π1, o1,2, π2, o3, π3, o2,1〉 where π1 =
π2 = 〈〉 and π3 = 〈oy〉. As a result, path(π) = 〈IP , 〈IP , t1,2〉, t1,2, 〈t1,2, t3〉, t3,
〈t3, t2,1〉, t2,1, 〈t2,1, vA〉, vA〉.
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5.7 Conclusion

In this chapter, we have defined PC-GTSP-reducible problems. These prob-
lems are a subset of STRIPS problems that can be solved using the PC-GTSP.
We have shown the transformations from the PC-GTSP solution to the
optimal plan and vice versa.

Compared to TSP-reducible problems, PC-GTSP-reducible problems have
their advantages and disadvantages. PC-GTSP-reducible problems can con-
tain a larger variety of operators. Operators can be partially dependent on
acyclic mutex groups, and every path from the initial to the goal state in every
acyclic projection can contain multiple transitions dependent on the positional
mutex group. TSP-reducible problems are more restricted. The paths from
the initial to the goal state in every acyclic projection can contain exactly one
transition dependent on the positional mutex group. Moreover, the operators
cannot be partially dependent on acyclic mutex groups. The advantage of
the TSP-reducible problem is that its encoding can be solved using TSP. As
we have discussed in Chapter 2, the PC-GTSP is a generalization of the TSP,
and the TSP solvers are able to solve problems of much larger sizes than
PC-GTSP solvers.

In the next chapter, the results of computational experiments of TSP-
reducible and PC-GTSP-reducible problems will be shown.
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Chapter 6

Experimental Results

In Chapter 4 and Chapter 5, we have proposed encodings of TSP-reducible and
PC-GTSP-reducible problems as TSP and PC-GTSP instances, respectively.
In this chapter, we will experimentally evaluate these proposed encodings
and discuss their performance.

We have implemented a detector of TSP-reducible and PC-GTSP-reducible
problems. Its implementation is in Python, and as its input, it takes the
Cplan1 FDR output. This detector builds projections to mutex groups of
the problem, and it verifies whether TSP-reducible or PC-GTSP-reducible
problem structure conditions are met. We have run this detector on all of
the problem instances of IPC 2011, 2014, and 2018 optimal tracks. With
two exceptions, checked instances did not meet the condition of having all
but one acyclic projections to mutex groups. However, the Visit-All problem
was determined as a TSP-reducible and OpenStacks as a PC-GTSP-reducible
problem.

In the following sections, we will experimentally evaluate the performance
of solving their instances as the TSP and the PC-GTSP, respectively. These
results will be compared to the performance of A* search with different
heuristic functions of the Fast-Downward planner (Helmert, 2006). Fast-
Downward is an award-winning planner that is widely used for domain-
independent planning and offers a large variety of different heuristics.

From these offered heuristics, we have decided to include a blind heuris-
tic, which is basically the BFS. This heuristic made the search uninformed
and was included as an evaluation baseline. On top of this heuristic, we
have selected several state-of-the-art heuristics. We have used the relax-
ation heuristic hmax (Bonet and Geffner, 2001), the Landmark-Cut (lmc)
abstraction heuristic (Helmert and Domshlak, 2009), the merge and shrink
heuristic with SCC-DFP merge strategy and bisimulation non-greedy shrink
strategy (m&s) (Helmert et al., 2014; Sievers et al., 2016), the operator

1https://gitlab.com/danfis/cplan
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counting heuristic (oc) Pommerening et al. (2014), and the potential heuristic
optimized for all states (pot) (Seipp et al., 2015).

All of the tests were conducted under the International Planning Competi-
tion test criteria. For every test, the tested program was given 30 minutes
and 4GB of memory to solve the problem using a single CPU core. If the
tested program ran out of time or memory, the test was terminated.

Because our implementations use the Cplan translator for preprocessing
PDDL files, we have replaced the original Fast-Downward translator with
it. This was done to ensure that differences in planning performance are
not influenced by using different translators for our implementation and
Fast-Downward planning.

6.1 Visit-All

The first tested problem was Visit-All. This problem was already discussed in
Chapter 4. As a reminder, it is an IPC 2011 and 2014 problem that models
an agent in a grid, and this agent has to visit all of the specified locations.

In the International Planning Competition, Visit-All problems were in one
of two forms. The goal was to visit either every location in the grid (Variant 1)
or a subset of the locations in the grid (Variant 2). As we will show later
on, these two forms varied a bit in the results of the Fast-Downward planner,
as most of the heuristics were able to solve more instances of Variant 2
than Variant 1. Additionally, some of the instances might have contained a
redundant fact that the initial location was visited. This fact was removed in
the preprocessing.

As we have stated earlier, the Visit-All problems consist of a regular
structure. The locations are organized into a square grid, where each location
has at most four neighbors. Additionally, every location can be reached from
the initial state.

All of the Visit-All tests were conducted on Intel Xeon Gold 5120 with 4GB
RAM. Computational resources were provided by the ELIXIR-CZ project
(LM2015047), part of the international ELIXIR infrastructure.

6.1.1 Implementation

All of the IPC problems are defined in the Planning domain definition language
(PDDL). Our implementation of the Visit-All TSP-reducible solver is written
in C, and it is using the translator from Cplan for the translation of the
PDDL into the STRIPS. This STRIPS problem was first verified whether it
is a TSP-reducible problem. Then the positional projection was identified,
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TSP blind hmax lmc m&s oc pot

Solved 24 5 5 5 5 19 12
Variant 1 Not solved 0 19 19 19 19 5 12

Solved ratio 1.00 0.21 0.21 0.21 0.21 0.79 0.5
Solved 16 7 8 11 8 11 11

Variant 2 Not solved 0 9 8 5 8 5 5
Solved ratio 1.00 0.43 0.50 0.69 0.50 0.69 0.69

Table 6.1: Comparison of the number of solved Visit-All instances. Our solver
is denoted as TSP .

and the encoding created. For the calculations of the cheapest paths and
edge labels, the Floyd-Warshall algorithm was used.

Recall that the encoding is a TSP instance. This instance was solved using
the Concorde solver (Applegate et al., 2006). It is an optimal state-of-the-art
solver for the TSP that is able to solve TSP instances of sizes more than
85000 vertices (Applegate et al., 2011). Concorde solver was used with the
default settings, and the TSP instance was given to it in the TSPLIB file
format (Reinelt, 1995) with edge weights specified as an adjacency matrix.

6.1.2 Results

We have created a test set containing all of the Visit-All instances from IPC
2011 and IPC 2014. In total, 40 problem instances of grid sizes ranging from
2 × 2 up to 18 × 18 were in the test set. Out of them, 16 instances were
Variant 2 with a subset of goal locations. The remaining 24 instances were
Variant 1, where every location must be visited.

In Table 6.1, there is a summary of how many instances each approach
was able to solve. The solved ratio is a proportion of the number of solved
instances to the total number of instances of the same variant.

Our solver was able to plan all of the instances in the test set successfully.
Out of the Fast-Downward heuristics, oc was the most successful one. In
total, it was able to find a plan for 30 out of 40 instances. More specifically,
it has found a plan for 19 out of 24 instances of Variant 1, and a plan for 11
out of 16 instances of Variant 2. Fast-Downward heuristics generally had a
problem with the memory limit of 4GB. The only exception was oc and lmc
that were always terminated due to the time limit. It is interesting to note the
difference between ILP based heuristics (oc and pot) and their ability to solve
much more Variant 1 instances than any other Fast-Downward heuristics,
while their performance on Variant 2 was roughly the same.

The runtime dependency on the instance size of Fast-Downward heuristics
and our solver is in Figure 6.1. It depicts how much time different approaches
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Figure 6.1: Run time comparison of different Fast-Downward heuristics with our
solver depending on the problem size. Each of the figures shows only successfully
solved instances.

took on instances of a specific size. Recall that instances are square grids.
Therefore, if, for example, the number of locations is 64, then the problem
instance contains 8× 8 grid.

From these graphs, it is clearly visible, that running times of all of the
Fast-Downward heuristics rose very quickly with the increasing number of
locations. Our solver was able to manage nearly constant running time on all
of the Visit-All instances. All of the Fast-Downward heuristics were faster
than our solver on small instances. Most prominent are heuristics oc and pot.
This property exists because of the overhead of our solver. Recall that we
need to check whether the STRIPS problem is TSP-reducible and create the
encoding to the TSP instance. This overhead becomes negligible with the
increasing size of problem instances because the solving of the TSP becomes
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(c) : Fast-Downward lmc heuristic.
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Figure 6.2: The direct comparison of runtimes of Fast-Downward heuristics
and our solver. Every point in the graph is a single Visit-All instance.

the most time-demanding task.

Direct comparisons of running times of Fast-Downward heuristics and our
solver are provided in Figure 6.2. Every one of these scatter plots compare the
time needed for solving an instance by our solver and a single Fast-Downward
heuristic. A single point in the graph is a problem instance from our test
set. Its coordinates are the time needed for solving an instance by our solver
(x-axis) and Fast-Downward heuristics (y-axis). If an instance was not solved
within 30 minutes or the planner allocated more than 4GB of memory, its
time is plotted as Unknown.

From these plots, it is possible to clearly see the smallest instances that
Fast-Downward heuristics were faster on. The fact that our solver had
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Figure 6.3: The runtime dependency of TSP-reducible problem encoding on the
size of Visit-All instances. The time is in seconds and plotted in logarithmic
scale. The set of instances is taken from IPC 2011 and 2014 satisficing track.

approximately constant running times is also apparent from the grouping of
the points in the proximity of the 1s mark on the x-axis.

Our solver was able to find a plan for every instance in the test set within
1 second. Therefore, the experiments on the instances from the optimal track
did not provide us any approximation of the size of instances that our solver
will not be able to plan successfully. To find such an approximation, we have
created a second test set. This test set contained all 40 Visit-All Variant 1
instances from the satisficing track of IPC 2011 and IPC 2014. The sizes of
grids in this test set were much larger and span from 18× 18 up to 65× 65.

Results of our solver are shown in Figure 6.3. It was possible to solve most
of the instances up to the size 60 × 60. During the testing, a few outliers
appeared that took more time than most of the other instances. These outliers
were most likely created by the heuristics used in the Concorde solver as the
instances themselves do not differ in any way. All of them are regular grid
instances where every location must be visited. The encoding process itself
creates the graph every time in the same way, and the Concorde planner took,
on average, 95% of the total run time on every instance in this test set.

We have also conducted an experiment to find out how long it would take
for our solver to find a solution to the largest instance. In this experiment,
there was no time limit; only the memory limit on 4GB of RAM was still in
place. The solving of this largest satisficing instance with 65× 65 grid took
approximately 6 hours.
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6.2 OpenStacks

The second tested problem is called OpenStacks. Once again, it is a problem
from the International Planning Competition that was present in both optimal
and satisficing track.

This problem depicts a scenario where we have a number of orders that
we have to ship to our customers. Every order starts as a waiting order and
contains a set of products that we have to make. When we decide to start
preparing an order, it becomes open. Only when all of the products in the
order are made, it can be shipped. The last condition is that a product can
be made only when all of the orders containing it are open.

As our test set, we have chosen all of the 20 problem instances from IPC
2011. Additionally, we have included 24 problem instances generated using
an OpenStacks pddl-generator2. These instances were included because IPC
2011 instances start with too many orders, products, and stacks. Therefore,
it would be hard to measure the run time dependency on the problem size.

For every IPC OpenStacks problem instance, it holds that the number of
stacks, orders, and products is equal. We will denote this number as n.

The size of problem instances from IPC 2011 ranges from n = 10 up to
n = 29. Our generated instances have sizes between n = 1 and n = 8.

The OpenStacks problems contain operator costs 0 and 1. However, without
formal proof, every solution to the same problem with all costs equal to 1
has the same optimal plan. This is due to the fact that for every product we
always need to use one operator to make it, and for every order, we always
need two operators - to open it and to ship it. These operators have zero costs.
The only type of operators that have cost equal to one are the operators that
open a new stack. In both metric and non-metric version of the problem,
their number must be minimal. As a result, all of the tested problems had
all operator costs equal to 1.

Just as experiments with Visit-All, all of the tests were conducted with the
30 minutes time limit and the 4GB memory limit. The OpenStacks testing
was done on a single core of the Intel i5 4670k CPU.

Our OpenStacks PC-GTSP-reducible problem solver is implemented in
Python and uses the Cplan translator for the translation of the PDDL problem
into the STRIPS problem. First, this STRIPS problem is verified whether
it is a PC-GTSP-reducible problem, and then the positional and acyclic
projections are created. According to our proposed PC-GTSP-reducible
problem encoding, we create a PC-GTSP instance.

We have tested two distinct approaches on how to solve these instances.
2https://github.com/AI-Planning/pddl-generators
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The first one has been using the LKH-3 solver (Helsgaun, 2017), and the
second one the ILP representation proposed by Salman (2015).

6.2.1 LKH-3 Version

In this subsection, we will discuss the first approach with the LKH-3 solver.
LKH-3 is an approximate solver for multiple variants of the TSP. One of
them is the SOP (so-called PC-ATSP). As we have shown in Chapter 2, there
exists a transformation from the GTSP to the ATSP.

In our implementation, the PC-GTSP problem was transformed into PC-
ATSP using the transformation proposed by Noon and Bean (1993). This
transformation creates a zero-cost cycle in every cluster and increases costs
of edges incident with the cluster. This ensures that all of the vertices in
the cluster are visited before moving to a different cluster. The precedence
constraints that were between each of the clusters were converted into vertex
precedence constraints, i.e., every vertex from the cluster preceding C has to
be in the precedence conditions of every vertex in the cluster C.

The LKH-3 solver was tested in various settings. We have tried varying
the number of runs between 1 and 100, the number of trials between 100
and 1,000,000, and also various different initial tour algorithms, namely,
Greedy algorithm, Nearest Neighbor algorithm, a walk in the graph, and
Boruvka’s algorithm. As the input of the LKH-3 we were providing our
PC-ATSP instance in the TSPLIB file format with edge weights specified as
an adjacency matrix.

Experimental testing of LKH-3 on the test set provided very poor results.
The PC-GTSP-reducible problem encoding of the OpenStacks instances
contained a high number of edges that were assigned the infinite cost because
there exists no cheapest path between their incident vertices in the cyclic
projection. The LKH-3 solver does not support the non-existence of an edge
between two vertices and is defined only for the problems on the complete
graph. Even though these non-existent edges were assigned very high costs, the
solver was still including these edges in solutions because it is an approximate
solver.

From the definition of the PC-GTSP-reducible problem (Chapter 5), only
the solutions with no edges with the infinite cost are considered valid and
can be transformed to the STRIPS plan. As a result, the LKH-3 solver was
unable to provide us such approximate solutions that can be transformed
into a STRIPS plan. Only for the smallest instances (n < 4) in the test set,
correct solutions were obtained.
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ILP blind hmax lmc m&s oc pot

Solved 19 40 41 41 40 35 41
Not solved 25 4 3 3 4 9 3
Solved ratio 0.43 0.91 0.93 0.93 0.91 0.80 0.93

Table 6.2: Comparison of the number of solved OpenStacks instances.

6.2.2 ILP Version

Our second approach was using the ILP for solving the PC-GTSP instance.
An ILP solver CPLEX3 (version 12.10) was used for this task. It is a state-of-
the-art commercial ILP solver that provides very good results in comparison
to the other ILP solvers (Jablonsky, 2015).

In our solver, we were transforming the PC-GTSP instance into the ILP
representation proposed by Salman (2015). This representation has a poly-
nomial number of subtour elimination constraints and needs O(n2 + 2m2)
variables and O(n2 +m3) constraints, where n is the number of vertices and
m is the number of clusters.

The number of solved instances from the OpenStacks test set is shown
in Table 6.2. From the table, it is apparent that all of the Fast-Downward
heuristics were able to solve more instances than our solver.

The runtime dependency on the problem size is plotted in Figure 6.4. From
the figure, it is clearly visible that our solver was able to solve only small
instances. On instances with n ≥ 7, our solver quickly ran out of the memory.
On the contrary, the best Fast-Downward heuristics were able to find a plan
for instances with n ≤ 26.

The runtime comparisons of the time needed for solving an instance by
our solver and Fast-Downward heuristics are shown in the scatter plots
in Figure 6.5. A single point in the graph is a problem instance from our
test set. Its coordinates are the time needed for solving an instance by our
solver (x-axis) and Fast-Downward heuristics (y-axis). From these plots, it is
visible that our solver was slower than Fast-Downward heuristics and capable
of solving fewer instances.

These poor results were caused by the mentioned number of variables and
constraints needed for the ILP PC-GTSP representation. Recall that in our
PC-GTSP-reducible problem encoding, the number of vertices is equal to
the number of transitions between distinct states in acyclic projections. The
number of these transitions in an OpenStacks instance can be calculated.
Given an OpenStacks STRIPS problem with s stacks, o orders, and p products,
then, without formal proof, the number of transitions in the acyclic projection

3https://www.ibm.com/analytics/cplex-optimizer
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Figure 6.4: Run time comparison of different Fast-Downward heuristics with our
solver depending on the problem size. Each of the figures shows only successfully
solved instances.

is equal to 2so + sp. Combined with the number of both variables and
constraints that grows very quickly with increasing size of instances, the ILP
PC-GTSP representation have a significant overhead.

6.3 Conclusion

Our solver using the TSP-reducible problem encoding for solving IPC Visit-
All problem instances was shown to be very effective. Using the encoding, our
TSP solver outperformed state-of-the-art heuristics of the Fast-Downward
planner both in terms of running time and number of instances solved. It was
possible not only to optimally solve all of the 40 instances of the optimal track
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of the IPC but even solving 32 out of 40 larger instances from the satisficing
track of this competition.

The solver using the ILP to solve the PC-GTSP-reducible problem encoding
of OpenStacks problem instances has exhibited poor experimental results.
This solver had slower run times and was capable of solving fewer instances
than heuristics of Fast-Downward. These results were due to the large number
of variables and constraints in the ILP.
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Figure 6.5: The scatter plot of the direct comparison of run times of the
Fast-Downward planner and our solver. Every point is one problem instance.
On the x-axis, there is a runtime of our solver. On the y-axis, there is a runtime
of the Fast-Downward planner.
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Chapter 7

Conclusion

In this work, we have focused on defining a set of STRIPS problems that can
be solved using TSP variants. Using splitting of the set of facts into pairwise
disjoint mutex groups, we have formulated two classes of such problems.
These two classes of problems differ in various restrictions on the structure of
projections into these mutex groups.

First, we have defined TSP-reducible STRIPS problems and proposed their
encoding into a TSP instance, which is a graph. We have proven that every
solution to this instance can be transformed into an optimal plan in the
original STRIPS problem. Additionally, we have defined the relationship
between the cost of the solution to the TSP instance and the cost of the
optimal plan. Furthermore, we have proven that the IPC problem called
Visit-All is TSP-reducible.

Afterward, we have defined PC-GTSP-reducible STRIPS problems and
shown their encoding. In this case, the encoding is a PC-GTSP instance.
PC-GTSP-reducible problems do not have the structure as constrained as
TSP-reducible problems, as their projections into mutex groups can be more
complex.

For PC-GTSP-reducible problems, we have proven that there exists a
transformation of every solution to their encoding into the optimal plan in
the original STRIPS problem. Again, we have shown a relationship between
the cost of the solution to the encoding and the cost of the optimal plan.

In the last part, we have implemented a solver for the Visit-All problem as an
example of TSP-reducible problems. This solver was transforming the STRIPS
problem into the TSP-reducible problem encoding and was solving the TSP
instance using a state-of-the-art TSP solver called Concorde. Additionally,
a solver for the PC-GTSP-reducible IPC problem called OpenStacks was
implemented. This solver was using the ILP solver CPLEX to solve the
PC-GTPS-reducible problem encoding created from the problem’s STRIPS
representation. The performance of both of these solvers was experimentally
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7. Conclusion......................................
evaluated and compared to several types of heuristic search of the state-of-
the-art solver Fast-Downward.

These experimental tests demonstrated very good results of the Visit-All
TSP-reducible problem encoding. This approach had better run times and
was capable of solving more problem instances than any of heuristic searches
of Fast-Downward.

The PC-GTSP-reducible problem encoding of OpenStacks exhibited poor
results due to a large number of vertices that are necessary for the encoding.
This approach had worse run times than any of heuristic searches of Fast-
Downward, and it was capable of solving fewer instances.

In further works, it would be beneficial to check other possibilities of solving
the PC-GTSP and experimentally evaluate whether they will provide better
results than the domain-independent planner. Additionally, some other classes
of STRIPS problems solvable as different TSP variants might be found.
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Appendix B

CD Contents..1. domain-checker.zip - Reducibility detector - Program that detects whether
the problem is TSP-reducible or PC-GTSP-reducible...2. visitall-solver.zip - Visit-All TSP solver - Solver using the TSP-reducible
problem encoding to solve the Visit-All problem..3. pcgtsp-solver.zip - OpenStacks PC-GTSP solver - Solver using the PC-
GTSP-reducible problem encoding to solve the OpenStacks problem
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